Abatement by Alhagi maurorum of lead-induced nephrotoxicity in rats: emphasis on Nrf2/HO-1

Cuomo D, Foster MJ, Threadgill D (2022) Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. Environ Sci Pollut Res Int 29:35583–35598. https://doi.org/10.1007/s11356-022-19333-5

Article  PubMed  PubMed Central  Google Scholar 

Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int 23:8244–8259. https://doi.org/10.1007/s11356-016-6333-x

Article  PubMed  CAS  Google Scholar 

Kumar A, Kumar A, Cabral-Pinto MMS, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Gupta DK, Malyan SK, Kumar SS, Khan SA, Yadav KK (2020) Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health 17:2179. https://doi.org/10.3390/ijerph17072179

Article  PubMed  PubMed Central  CAS  Google Scholar 

Oktem F, Arslan MK, Dündar B, Delibas N, Gültepe M, Ergürhan-Ilhan I (2004) Renal effects and erythrocyte oxidative stress in long-term low-level lead-exposed adolescent workers in auto repair workshops. Arch Toxicol 78:681–687. https://doi.org/10.1007/s00204-004-0597-5

Article  PubMed  CAS  Google Scholar 

Rana MN, Tangpong J, Rahman MM (2018) Mercury and Arsenic-induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep 5:704–713. https://doi.org/10.1016/j.toxrep.2018.05.012

Article  PubMed  PubMed Central  CAS  Google Scholar 

Loumbourdis NS (2003) Nephrotoxic effects of lead nitrate in Rana ridibunda. Arch Toxicol 77:527–532. https://doi.org/10.1007/s00204-003-0487-2

Article  PubMed  CAS  Google Scholar 

Wang L, Wang H, Li J, Chen D, Liu Z (2011) Simultaneous effects of lead and cadmium on primary cultures of rat proximal tubular cells: interaction of apoptosis and oxidative stress. Arch Environ Contam Toxicol 61:500–511. https://doi.org/10.1007/s00244-011-9644-4

Article  PubMed  CAS  Google Scholar 

De Smet PA (1997) The role of plant-derived drugs and herbal medicines in healthcare. Drugs 54:801–840. https://doi.org/10.2165/00003495-199754060-00003

Article  PubMed  Google Scholar 

Mehrandish R, Rahimian A, Shahriary A (2019) Heavy metals detoxification: a review of herbal compounds for chelation therapy in heavy metals toxicity. J Herbmed Pharmacol 8:69–77

Article  CAS  Google Scholar 

Hodges RE, Minich DM (2015) Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J Nutr Metab. https://doi.org/10.1155/2015/760689

Article  PubMed  PubMed Central  Google Scholar 

Muhammad G, Hussain MA, Anwar F, Ashraf M, Gilani A-H (2015) Alhagi: a plant genus rich in bioactives for pharmaceuticals. Phytother Res 29:1–13. https://doi.org/10.1002/ptr.5222

Article  PubMed  Google Scholar 

Ahmad N, Bibi Y, Saboon, Raza I, Zahara K, Idrees S, Khalid N, Bashir T, Tabassum S, Mudrikah (2015) Traditional uses and pharmacological properties of Alhagi maurorum: a review. Asian Pac J Trop Dis 5:856–861. https://doi.org/10.1016/S2222-1808(15)60945-8

Article  Google Scholar 

Ahmad S, Riaz N, Saleem M, Jabbar A, Nisar-Ur-Rehman A, Ashraf M (2010) Antioxidant flavonoids from Alhagi maurorum. J Asian Nat Prod Res 12:138–143. https://doi.org/10.1080/10286020903451724

Article  PubMed  CAS  Google Scholar 

Shaker E, Mahmoud H, Mnaa S (2010) Anti-inflammatory and anti-ulcer activity of the extract from Alhagi maurorum (camelthorn). Food Chem Toxicol 48:2785–2790. https://doi.org/10.1016/j.fct.2010.07.007

Article  PubMed  CAS  Google Scholar 

Changizi-Ashtiyani S, Alizadeh M, Najafi H, Babaei S, Khazaei M, Jafari M, Hossaini N, Avan A, Bastani B (2016) Physalis alkekengi and Alhagi maurorum ameliorate the side effect of cisplatin-induced nephrotoxicity. Cancer Gene Ther 23:235–240. https://doi.org/10.1038/cgt.2016.24

Article  PubMed  CAS  Google Scholar 

OECD. Test No. 423: Acute Oral toxicity—Acute Toxic Class Method|OECD Guidelines for the Testing of Chemicals, Section 4 : Health Effects (2001). https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001-en Accessed 18 June 2024

Khafaji SS (2023) Antioxidant, anti-inflammatory, and anti-reprotoxic effects of kaempferol and vitamin E on lead acetate-induced testicular toxicity in male rats. Open Vet J 13:1683–1695. https://doi.org/10.5455/OVJ.2023.v13.i12.17

Article  PubMed  PubMed Central  Google Scholar 

Sheweita SA, Mashaly S, Newairy AA, Abdou HM, Eweda SM (2016) Changes in oxidative stress and antioxidant enzyme activities in streptozotocin-induced diabetes mellitus in rats: role of Alhagi maurorum extracts. Oxid Med Cell Longev 2016:5264064. https://doi.org/10.1155/2016/5264064

Article  PubMed  PubMed Central  CAS  Google Scholar 

Charkiewicz AE, Backstrand JR (2020) Lead toxicity and pollution in Poland. Int J Environ Res Public Health 17:4385. https://doi.org/10.3390/ijerph17124385

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vagnoni G, Bortolotti E, Checchi S, Saieva C, Berti G, Doccioli C, Caini S (2024) Lead (Pb) in biological samples in association with cancer risk and mortality: a systematic literature review. Cancer Epidemiol. https://doi.org/10.1016/j.canep.2024.102630

Article  PubMed  Google Scholar 

Ekong EB, Jaar BG, Weaver VM (2006) Lead-related nephrotoxicity: a review of the epidemiologic evidence. Kidney Int 70:2074–2084. https://doi.org/10.1038/sj.ki.5001809

Article  PubMed  CAS  Google Scholar 

Al-Megrin WA, Soliman D, Kassab RB, Metwally DM, Abdel Moneim NAE, El-Khadragy MF (2020) Coenzyme Q10 activates the antioxidant machinery and inhibits the inflammatory and apoptotic cascades against lead acetate-induced renal injury in rats. Front Physiol 11:64. https://doi.org/10.3389/fphys.2020.00064

Article  PubMed  PubMed Central  Google Scholar 

Kahalerras L, Otmani I, Abdennour C (2022) The Allium triquetrum L. leaves mitigated hepatotoxicity and nephrotoxicity induced by lead acetate in Wistar Rats. Biol Trace Elem Res 200:4733–4743. https://doi.org/10.1007/s12011-021-03052-y

Article  PubMed  CAS  Google Scholar 

Mohammed GM, Sedky A, Elsawy H (2017) A study of the modulating action of quercetin on biochemical and histological alterations induced by lead exposure in the liver and kidney of rats. Chin J Physiol 60:183–190. https://doi.org/10.4077/CJP.2017.BAF439

Article  PubMed  CAS  Google Scholar 

Gargouri M, Soussi A, Akrouti A, Magné C, El Feki A (2019) Potential protective effects of the edible alga Arthrospira platensis against lead-induced oxidative stress, anemia, kidney injury, and histopathological changes in adult rats. Appl Physiol Nutr Metab 44:271–281. https://doi.org/10.1139/apnm-2018-0428

Article  PubMed  CAS  Google Scholar 

Saber TM, Abo-Elmaaty AMA, Said EN, Beheiry RR, Moselhy AAA, Abdelgawad FE, Arisha MH, Saber T, Arisha AH, Fahmy EM (2022) Alhagi maurorum ethanolic extract rescues Hepato-neurotoxicity and neurobehavioral alterations induced by lead in rats via abrogating oxidative stress and the caspase-3-dependent apoptotic pathway. Antioxidants (Basel) 11:1992. https://doi.org/10.3390/antiox11101992

Article  PubMed  CAS  Google Scholar 

Al-Snafi A (2016) Detoxification capacity and protective effects of medicinal plants (part 2): plant based review. IOSR J Pharm (IOSRPHR) 06:63–84. https://doi.org/10.9790/3013-067036384

Article  CAS  Google Scholar 

Hsu P-C, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44. https://doi.org/10.1016/s0300-483x(02)00380-3

Article  PubMed  CAS  Google Scholar 

Lopes ACBA, Peixe TS, Mesas AE, Paoliello MMB (2016) Lead exposure and oxidative stress: a systematic review. Rev Environ Contam Toxicol 236:193–238. https://doi.org/10.1007/978-3-319-20013-2_3

Comments (0)

No login
gif