Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63. https://doi.org/10.3322/caac.21834.
Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health. 2019;11:287–99. https://doi.org/10.2147/IJWH.S197604.
Article PubMed PubMed Central Google Scholar
Janciauskiene S, Wrenger S, Günzel S, Gründing AR, Golpon H, Welte T. Potential roles of acute phase proteins in cancer: why do cancer cells produce or take up exogenous acute phase protein alpha1-antitrypsin? Front Oncol. 2021;11: 622076.
Article PubMed PubMed Central CAS Google Scholar
Belczacka I, Latosinska A, Metzger J, Marx D, Vlahou A, Mischak H, Frantzi M. Proteomics biomarkers for solid tumors: current status and future prospects. Mass Spectrom Rev. 2019;38(1):49–78. https://doi.org/10.1002/mas.21572.
Article PubMed CAS Google Scholar
Liao C, An J, Yi S, Tan Z, Wang H, Li H, Guan X, Liu J, Wang Q. FUT8 and protein core fucosylation in tumours: from diagnosis to treatment. J Cancer. 2021;12(13):4109–20. https://doi.org/10.7150/jca.58268.
Article PubMed PubMed Central CAS Google Scholar
Mroz J, Pelc M, Mitusinska K, Chorostowska-Wynimko J, Jezela-Stanek A. Computational tools to assist in analyzing effects of the SERPINA1 gene variation on alpha-1 antitrypsin (AAT). Genes (Basel). 2024;15(3):340. https://doi.org/10.3390/genes15030340.
Article PubMed CAS Google Scholar
Grzesik K, Janik M, Hoja-Lukowicz D. The hidden potential of glycomarkers: glycosylation studies in the service of cancer diagnosis and treatment. Biochim Biophys Acta Rev Cancer. 2023;1878(3): 188889. https://doi.org/10.1016/j.bbcan.2023.188889.
Article PubMed CAS Google Scholar
Tikhonov D, Kulikova L, Kopylov AT, Rudnev V, Stepanov A, Malsagova K, Izotov A, Kulikov D, Zulkarnaev A, Enikeev D, Potoldykova N, Kaysheva AL. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci Rep. 2021;11(1):19318. https://doi.org/10.1038/s41598-021-98201-7.
Article PubMed PubMed Central CAS Google Scholar
Jaberie H, Hosseini SV, Naghibalhossaini F. Evaluation of alpha 1-antitrypsin for the early diagnosis of colorectal cancer. Pathol Oncol Res. 2020;26(2):1165–73. https://doi.org/10.1007/s12253-019-00679-0.
Article PubMed CAS Google Scholar
Chen S-Y, Chang T-C, Lin C-Y, Lai C-H, Ren-Chin W, Yang L-Y, Chang W-Y, Lee Y-S, Yang W-CV, Chao A. Serum levels of alpha1-antitrypsin isoforms in patients with ovarian clear cell carcinoma: an exploratory study. J Chinese Med Assoc. 2021;84(11):1048–53. https://doi.org/10.1097/JCMA.0000000000000604.
Li Y-T, Lee W-L, Wang P-H. Is it possible to use the serum levels of alpha 1-antitrypsin as a serum biomarker to distinguish endometriosis and endometriosis-associated epithelial ovarian cancers? J Chinese Med Assoc. 2021;84(11):985–6. https://doi.org/10.1097/JCMA.0000000000000644.
Shrestha B, Dunn L. The declaration of Helsinki on medical research involving human subjects: a review of seventh revision. J Nepal Health Res Council. 2020;17(4):548–52. https://doi.org/10.33314/jnhrc.v17i4.1042.
Berek JS, Renz M, Kehoe S, Kumar L, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int J Gynaecol Obstet. 2021;155(Suppl 1):61–85. https://doi.org/10.1002/ijgo.13878.
Article PubMed PubMed Central Google Scholar
Pietrowska M, Wlosowicz A, Gawin M, Widlak P. MS-based proteomic analysis of serum and plasma: problem of high abundant components and lights and shadows of albumin removal. Adv Exp Med Biol. 2019;1073:57–76. https://doi.org/10.1007/978-3-030-12298-0_3.
Article PubMed CAS Google Scholar
Hueso D, Fontecha J, Gómez-Cortés P. Comparative study of the most commonly used methods for total protein determination in milk of different species and their ultrafiltration products. Front Nutr. 2022;9: 925565. https://doi.org/10.3389/fnut.2022.925565.
Article PubMed PubMed Central CAS Google Scholar
Shabir S, Asiaf A. Comparative study on the mutation spectrum of L-MYC and C-MYC genes of blood cfDNA in patients with ovarian cancer and healthy females. J Obstet Gynaecol Res. 2023;49(12):2894–904. https://doi.org/10.1111/jog.15808.
Article PubMed CAS Google Scholar
Gaona-Luviano P, Medina-Gaona LA, Magaña-Pérez K. Epidemiology of ovarian cancer. Chinese Clin Oncol. 2020;9(4):47–47. https://doi.org/10.21037/cco-20-34.
Liang X, Harris HR, Hendryx M, Shadyab AH, Hale L, Li Y, Crane TE, Cespedes Feliciano EM, Stefanick ML, Luo J. Sleep characteristics and risk of ovarian cancer among postmenopausal women. Cancer Prev Res. 2021;14(1):55–64. https://doi.org/10.1158/1940-6207.CAPR-20-0174.
Gupta D, Lis CG. Role of CA125 in predicting ovarian cancer survival-a review of the epidemiological literature. J Ovarian Res. 2009;2:1–20. https://doi.org/10.1186/1757-2215-2-13.
Zorn KK, Tian C, McGuire WP, Hoskins WJ, Markman M, Muggia FM, Rose PG, Ozols RF, Spriggs D, Armstrong DK. The prognostic value of pretreatment CA 125 in patients with advanced ovarian carcinoma: a gynecologic oncology group study. Cancer. 2009;115(5):1028–35. https://doi.org/10.1002/cncr.24084.
Morales-Vásquez F, Pedernera E, Reynaga-Obregón J, López-Basave HN, Gómora MJ, Carlón E, Cárdenas S, Silva-Ayala R, Almaraz M, Méndez C. High levels of pretreatment CA125 are associated to improved survival in high grade serous ovarian carcinoma. J Ovarian Res. 2016;9:1–6. https://doi.org/10.1186/s13048-016-0247-6.
Guo N, Minas G, Synowsky SA, Dunne MR, Ahmed H, McShane R, Bhardwaj A, Donlon NE, Lorton C, O’Sullivan J, Reynolds JV, Caie PD, Shirran SL, Lynch AG, Stewart AJ, Arya S. Identification of plasma proteins associated with oesophageal cancer chemotherapeutic treatment outcomes using SWATH-MS. J Proteomics. 2022;266: 104684. https://doi.org/10.1016/j.jprot.2022.104684.
Article PubMed CAS Google Scholar
Noreen S, Akhtar S, Batool T, Gardner QA, Akhtar MW. Tubulin beta 2C Chain (TBB2C), a potential marker of ovarian cancer, an insight from ovarian cancer proteome profile. ACS Omega. 2021;6(16):10506–14. https://doi.org/10.1021/acsomega.0c03262.
Article PubMed PubMed Central CAS Google Scholar
Tubio-Perez RA, Torres-Duran M, Fernandez-Villar A, Ruano-Ravina A. Alpha-1 antitrypsin deficiency and risk of lung cancer: a systematic review. Transl Oncol. 2021;14(1): 100914. https://doi.org/10.1016/j.tranon.2020.100914.
Article PubMed CAS Google Scholar
Hiller A-M, Ekström M, Piitulainen E, Lindberg A, Rönmark E, Tanash H. Cancer risk in severe alpha-1-antitrypsin deficiency. Europ Respirat J. 2022;60(4):2103200. https://doi.org/10.1183/13993003.03200-2021.
Thompson S, Guthrie D, Turner G. Fucosylated forms of alpha-1-antitrypsin that predict unresponsiveness to chemotherapy in ovarian cancer. Br J Cancer. 1988;58(5):589–93. https://doi.org/10.1038/bjc.1988.265.
Article PubMed PubMed Central CAS Google Scholar
Yip P, Chen T-H, Seshaiah P, Stephen LL, Michael-Ballard KL, Mapes JP, Mansfield BC, Bertenshaw GP. Comprehensive serum profiling for the discovery of epithelial ovarian cancer biomarkers. PLoS ONE. 2011;6(12): e29533. https://doi.org/10.1371/journal.pone.0029533.
Comments (0)