Photodynamic therapy as a strategic ally in radiotherapy for triple-negative breast cancer: the importance of treatment order

Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13:674–690. https://doi.org/10.1038/nrclinonc.2016.66

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T (2018) Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 8:1483–1507. https://doi.org/10.1007/s13346-018-0551-3

Article  PubMed  PubMed Central  Google Scholar 

Yin L, Duan J-J, Bian X-W, Yu S-C (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res : BCR 22(1):1–13. https://doi.org/10.1186/s13058-020-01296-5

Article  Google Scholar 

Bradley JA, Mendenhall NP (2018) Novel radiotherapy techniques for breast cancer. Annu Rev Med 69:277–289. https://doi.org/10.1146/annurev-med-042716-103422

Article  CAS  PubMed  Google Scholar 

He L, Lv Y, Song Y, Zhang B (2019) The prognosis comparison of different molecular subtypes of breast tumors after radiotherapy and the intrinsic reasons for their distinct radiosensitivity. Cancer Manag Res 11:5765–5775. https://doi.org/10.2147/cmar.s213663

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan IB, Dolivet G, Cerese P, Poorteen VV, Roest G, Rauschning W (2010) Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study. Head Neck 32(12):1597–1604. https://doi.org/10.1002/hed.21368

Article  PubMed  Google Scholar 

Zoepf T, Jakobs R, Arnold JC, Apel D, Riemann JF (2005) Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol 100:2426–2430. https://doi.org/10.1111/j.1572-0241.2005.00318.x

Article  CAS  PubMed  Google Scholar 

Meulemans J, Delaere P, Poorten VV (2019) Photodynamic therapy in head and neck cancer: indications, outcomes, and future prospects. Curr Opin Otolaryngol Head Neck Surg 27:136–141. https://doi.org/10.1097/MOO.0000000000000521

Article  PubMed  Google Scholar 

Yano T, Wang KK (2020) Photodynamic therapy for gastrointestinal cancer. Photochem Photobiol 96:517–523. https://doi.org/10.1111/php.13206

Article  CAS  PubMed  Google Scholar 

Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC (2019) Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity. Biochim Biophys Acta 1872:1–17. https://doi.org/10.1016/j.bbcan.2019.07.003

Article  CAS  Google Scholar 

Sadeghloo AY, Khorsandi K, Kianmehr Z (2020) Synergistic effect of photodynamic treatment and doxorubicin on triple negative breast cancer cells. Photochem Photobiol Sci 19:1580–1590. https://doi.org/10.1039/d0pp00132e

Article  CAS  Google Scholar 

Mayahi S, Neshasteh-Riz A, Pornour M, Eynali S, Montazarabadi A (2020) Investigation of combined photodynamic and radiotherapy effects of gallium phthalocyanine chloride on MCF-7 breast cancer cells. J Biol Inorg Chem: JBIC 25(1):39–48. https://doi.org/10.1007/s00775-019-01730-w

Article  CAS  PubMed  Google Scholar 

Cenklová V (2017) Photodynamic therapy with TMPyP—Porphyrine induces mitotic catastrophe and microtubule disorganization in HeLa and G361 cells, a comprehensive view of the action of the photosensitizer. J Photochem Photobiol, B 173:522–537. https://doi.org/10.1016/j.jphotobiol.2017.06.029

Article  CAS  PubMed  Google Scholar 

Seshadri M, Bellnier DA, Vaughan LA, Spernyak JA, Mazurchuk R, Foster TH, Henderson BW (2008) Light delivery over extended time periods enhances the effectiveness of photodynamic therapy. Clin Cancer Res: Official J Am Assoc Cancer Res 14(9):2796–2805. https://doi.org/10.1158/1078-0432.CCR-07-4705

Article  CAS  Google Scholar 

Colombo LL, Vanzulli SI, Villanueva A, Cañete M, Juarranz A, Stockert JC (2005) Long-term regression of the murine mammary adenocarcinoma, LM3, by repeated photodynamic treatments using meso-tetra (4-N-methylpyridinium) porphine. Int J Oncol 27(6):1053–1059. https://doi.org/10.3892/ijo.27.4.1053

Article  CAS  PubMed  Google Scholar 

Ramos Silva C, Cabral FV, de Camargo CF, Nunez SC, Mateus Yoshimura T, de Lima Luna AC et al (2016) Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure. J Biophotonics 9:1157–1166. https://doi.org/10.1002/jbio.201600107

Article  CAS  PubMed  Google Scholar 

Ramos Silva C, Pereira ST, Silva DFT, De Pretto LR, Zaituni CA, Rostelato MEC, Ribeiro MS (2023) Noninvasive red laser intervention before radiotherapy of triple-negative breast cancer in a murine model. Radiat Res. https://doi.org/10.1667/RADE-23-0005.1

Article  Google Scholar 

Silva CR, Pereira ST, Napolitano CM, Somessari ER, Ribeiro MS. Development of a shielding device for radiotherapy of breast cancer-bearing mice. Brazil J Radiat Sci. 2020; 8(1A):1–9. https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/1164.

Gasparini LS, Macedo ND, Pimentel EF, Fronza M, Junior VL, Borges WS et al (2017) In vitro cell ciability by cell profiler® software as equivalent to MTT Assay. Pharmacogn Mag 13:635–639. https://doi.org/10.4103/0973-1296.210176

Article  Google Scholar 

Franken NAP, Rodermond HM, Stap J, Haveman J, Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:1–3. https://doi.org/10.1038/nprot.2006.339

Article  CAS  Google Scholar 

Zimmermann M, Meyer N (2011) Annexin V/7-AAD staining in keratinocytes. Methods Mol Biol (Clifton, NJ) 740:53–63. https://doi.org/10.1007/978-1-61779-108-6_8

Article  CAS  Google Scholar 

Mahmoud AM, Wilkison FL, Sandhu MA, Dos Santos JM, Alexander MY (2019) Modulating oxidative stress in drug-induced injury and metabolic disorders: the role of natural and synthetic antioxidants. Oxidative Med Cellular Longev. https://doi.org/10.1155/2019/3206401

Article  Google Scholar 

Tonnesen HH, Mysterud I, Karlsen J, Skulberg OM, Laane CMM, Schumacher T (2010) Detection of singlet oxygen in blood serum samples of clinically healthy lambs and lambs suffering from alveld disease. Vet Res Commun 34(4):347–357. https://doi.org/10.1007/s11259-010-9362-9

Article  PubMed  Google Scholar 

Pereira ST, Silva CR, Nuñez SC, Ribeiro MS (2020) Safety and clinical impact of a single red light irradiation on breast tumor-bearing mice. Photochem Photobiol 97:435–442. https://doi.org/10.1111/php.13338

Article  CAS  PubMed  Google Scholar 

Banerjee SM, El-Sheikh S, Malhotra A, Mosse CA, Parker S, Willians NR et al (2020) Photodynamic therapy in primary breast cancer. J Clin Med 9(2):1–11. https://doi.org/10.3390/jcm9020483

Article  CAS  Google Scholar 

Zhang W, Zhang A, Sun W, Yue Y, Li H (2018) Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia and human papilloma virus infection: a systematic review and meta-analysis of randomized clinical trials. Medicine 97:1–8. https://doi.org/10.1097/MD.0000000000010864

Article  CAS  Google Scholar 

Garcia-Sampedro A, Tabero A, Mahamed I, Acedo P (2019) Multimodal use of the porphyrin TMPyP: from cancer therapy to antimicrobial applications. J Porphyrins Phthalocyanines 23:11–27

Article  CAS  Google Scholar 

Sambade MJ, Canap JT, Kimple RJ, Sartor CI, Shields JM (2009) Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol 93(3):639–644. https://doi.org/10.1016/j.radonc.2009.09.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riethmuller M, Burguer N, Bauer G (2015) Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Redox Biol 6:157–168. https://doi.org/10.1016/j.redox.2015.07.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakimov DS, Kojic VV, Alesksic LD, Bogdnovic GM, Ajdukovic JJ, Djurendic EA et al (2015) Androstane derivatives induce apoptotic death in MDA-MB-231 breast cancer cells. Bioorg Med Chem 23:7189–7198. https://doi.org/10.1016/j.bmc.2015.10.015

Article  CAS  PubMed 

Comments (0)

No login
gif