Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13:674–690. https://doi.org/10.1038/nrclinonc.2016.66
Article CAS PubMed PubMed Central Google Scholar
Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T (2018) Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 8:1483–1507. https://doi.org/10.1007/s13346-018-0551-3
Article PubMed PubMed Central Google Scholar
Yin L, Duan J-J, Bian X-W, Yu S-C (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res : BCR 22(1):1–13. https://doi.org/10.1186/s13058-020-01296-5
Bradley JA, Mendenhall NP (2018) Novel radiotherapy techniques for breast cancer. Annu Rev Med 69:277–289. https://doi.org/10.1146/annurev-med-042716-103422
Article CAS PubMed Google Scholar
He L, Lv Y, Song Y, Zhang B (2019) The prognosis comparison of different molecular subtypes of breast tumors after radiotherapy and the intrinsic reasons for their distinct radiosensitivity. Cancer Manag Res 11:5765–5775. https://doi.org/10.2147/cmar.s213663
Article CAS PubMed PubMed Central Google Scholar
Tan IB, Dolivet G, Cerese P, Poorteen VV, Roest G, Rauschning W (2010) Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study. Head Neck 32(12):1597–1604. https://doi.org/10.1002/hed.21368
Zoepf T, Jakobs R, Arnold JC, Apel D, Riemann JF (2005) Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol 100:2426–2430. https://doi.org/10.1111/j.1572-0241.2005.00318.x
Article CAS PubMed Google Scholar
Meulemans J, Delaere P, Poorten VV (2019) Photodynamic therapy in head and neck cancer: indications, outcomes, and future prospects. Curr Opin Otolaryngol Head Neck Surg 27:136–141. https://doi.org/10.1097/MOO.0000000000000521
Yano T, Wang KK (2020) Photodynamic therapy for gastrointestinal cancer. Photochem Photobiol 96:517–523. https://doi.org/10.1111/php.13206
Article CAS PubMed Google Scholar
Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC (2019) Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity. Biochim Biophys Acta 1872:1–17. https://doi.org/10.1016/j.bbcan.2019.07.003
Sadeghloo AY, Khorsandi K, Kianmehr Z (2020) Synergistic effect of photodynamic treatment and doxorubicin on triple negative breast cancer cells. Photochem Photobiol Sci 19:1580–1590. https://doi.org/10.1039/d0pp00132e
Mayahi S, Neshasteh-Riz A, Pornour M, Eynali S, Montazarabadi A (2020) Investigation of combined photodynamic and radiotherapy effects of gallium phthalocyanine chloride on MCF-7 breast cancer cells. J Biol Inorg Chem: JBIC 25(1):39–48. https://doi.org/10.1007/s00775-019-01730-w
Article CAS PubMed Google Scholar
Cenklová V (2017) Photodynamic therapy with TMPyP—Porphyrine induces mitotic catastrophe and microtubule disorganization in HeLa and G361 cells, a comprehensive view of the action of the photosensitizer. J Photochem Photobiol, B 173:522–537. https://doi.org/10.1016/j.jphotobiol.2017.06.029
Article CAS PubMed Google Scholar
Seshadri M, Bellnier DA, Vaughan LA, Spernyak JA, Mazurchuk R, Foster TH, Henderson BW (2008) Light delivery over extended time periods enhances the effectiveness of photodynamic therapy. Clin Cancer Res: Official J Am Assoc Cancer Res 14(9):2796–2805. https://doi.org/10.1158/1078-0432.CCR-07-4705
Colombo LL, Vanzulli SI, Villanueva A, Cañete M, Juarranz A, Stockert JC (2005) Long-term regression of the murine mammary adenocarcinoma, LM3, by repeated photodynamic treatments using meso-tetra (4-N-methylpyridinium) porphine. Int J Oncol 27(6):1053–1059. https://doi.org/10.3892/ijo.27.4.1053
Article CAS PubMed Google Scholar
Ramos Silva C, Cabral FV, de Camargo CF, Nunez SC, Mateus Yoshimura T, de Lima Luna AC et al (2016) Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure. J Biophotonics 9:1157–1166. https://doi.org/10.1002/jbio.201600107
Article CAS PubMed Google Scholar
Ramos Silva C, Pereira ST, Silva DFT, De Pretto LR, Zaituni CA, Rostelato MEC, Ribeiro MS (2023) Noninvasive red laser intervention before radiotherapy of triple-negative breast cancer in a murine model. Radiat Res. https://doi.org/10.1667/RADE-23-0005.1
Silva CR, Pereira ST, Napolitano CM, Somessari ER, Ribeiro MS. Development of a shielding device for radiotherapy of breast cancer-bearing mice. Brazil J Radiat Sci. 2020; 8(1A):1–9. https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/1164.
Gasparini LS, Macedo ND, Pimentel EF, Fronza M, Junior VL, Borges WS et al (2017) In vitro cell ciability by cell profiler® software as equivalent to MTT Assay. Pharmacogn Mag 13:635–639. https://doi.org/10.4103/0973-1296.210176
Franken NAP, Rodermond HM, Stap J, Haveman J, Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:1–3. https://doi.org/10.1038/nprot.2006.339
Zimmermann M, Meyer N (2011) Annexin V/7-AAD staining in keratinocytes. Methods Mol Biol (Clifton, NJ) 740:53–63. https://doi.org/10.1007/978-1-61779-108-6_8
Mahmoud AM, Wilkison FL, Sandhu MA, Dos Santos JM, Alexander MY (2019) Modulating oxidative stress in drug-induced injury and metabolic disorders: the role of natural and synthetic antioxidants. Oxidative Med Cellular Longev. https://doi.org/10.1155/2019/3206401
Tonnesen HH, Mysterud I, Karlsen J, Skulberg OM, Laane CMM, Schumacher T (2010) Detection of singlet oxygen in blood serum samples of clinically healthy lambs and lambs suffering from alveld disease. Vet Res Commun 34(4):347–357. https://doi.org/10.1007/s11259-010-9362-9
Pereira ST, Silva CR, Nuñez SC, Ribeiro MS (2020) Safety and clinical impact of a single red light irradiation on breast tumor-bearing mice. Photochem Photobiol 97:435–442. https://doi.org/10.1111/php.13338
Article CAS PubMed Google Scholar
Banerjee SM, El-Sheikh S, Malhotra A, Mosse CA, Parker S, Willians NR et al (2020) Photodynamic therapy in primary breast cancer. J Clin Med 9(2):1–11. https://doi.org/10.3390/jcm9020483
Zhang W, Zhang A, Sun W, Yue Y, Li H (2018) Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia and human papilloma virus infection: a systematic review and meta-analysis of randomized clinical trials. Medicine 97:1–8. https://doi.org/10.1097/MD.0000000000010864
Garcia-Sampedro A, Tabero A, Mahamed I, Acedo P (2019) Multimodal use of the porphyrin TMPyP: from cancer therapy to antimicrobial applications. J Porphyrins Phthalocyanines 23:11–27
Sambade MJ, Canap JT, Kimple RJ, Sartor CI, Shields JM (2009) Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol 93(3):639–644. https://doi.org/10.1016/j.radonc.2009.09.006
Article CAS PubMed PubMed Central Google Scholar
Riethmuller M, Burguer N, Bauer G (2015) Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Redox Biol 6:157–168. https://doi.org/10.1016/j.redox.2015.07.006
Article CAS PubMed PubMed Central Google Scholar
Jakimov DS, Kojic VV, Alesksic LD, Bogdnovic GM, Ajdukovic JJ, Djurendic EA et al (2015) Androstane derivatives induce apoptotic death in MDA-MB-231 breast cancer cells. Bioorg Med Chem 23:7189–7198. https://doi.org/10.1016/j.bmc.2015.10.015
Comments (0)