Unsupervised clustering analysis of treatment strategies for elite female athletes with severe stress urinary incontinence: focusing on competition return and SUI improvement

Okui N, Erel T, Okui MA (2023) Analysis of predictive factors for return to sports in female athletes with stress urinary incontinence. Cureus 15:e44364. https://doi.org/10.7759/cureus.44364

Article  PubMed  PubMed Central  Google Scholar 

Okui N, Ikegami T, Mikic AN, Okui M, Gaspar A (2023) Long-term improvement in urinary incontinence in an elite female athlete through laser treatment: a case report. Cureus 15:e36730. https://doi.org/10.7759/cureus.36730

Article  PubMed  PubMed Central  Google Scholar 

Rodrigues MP, Berube ME, Charette M, Mclean L (2024) Conservative interventions for female exercise-induced urinary incontinence: a systematic review. BJU Int. https://doi.org/10.1111/bju.16474

Article  Google Scholar 

Barbosa P, Rodrigues MP, e Silva AAC, e Silva MPM (2024) Prevalence of urinary incontinence in Brazilian para athletes. Br J Sports Med 58:bjsports-2024-108076. https://doi.org/10.1136/bjsports-2024-108076

Article  Google Scholar 

Nose-Ogura S, Yoshino O, Nakamura-Kamoto H et al (2023) Medical issues for female athletes returning to competition after childbirth. Phys Sportsmed. https://doi.org/10.1080/00913847.2023.2188395

Article  PubMed  Google Scholar 

Casey EK, Temme K (2017) Pelvic floor muscle function and urinary incontinence in the female athlete. Phys Sportsmed 45:399–407. https://doi.org/10.1080/00913847.2017.1372677

Article  PubMed  Google Scholar 

Pires TF, Pires PM, Moreira MH et al (2020) Pelvic floor muscle training in female athletes: a randomized controlled pilot study. Int J Sports Med 41:264–270. https://doi.org/10.1055/a-1073-7977

Article  PubMed  Google Scholar 

Dakic JG, Hay-Smith J, Lin KY et al (2023) Experience of playing sport or exercising for women with pelvic floor symptoms: a qualitative study. Sports Med Open 9:25. https://doi.org/10.1186/s40798-023-00565-9

Article  PubMed  PubMed Central  Google Scholar 

Hilde G, Stær-Jensen J, Siafarikas F et al (2023) Postpartum pelvic floor muscle training, levator ani avulsion and levator hiatus area: a randomized trial. Int Urogynecol J 34:413–423. https://doi.org/10.1007/s00192-022-05406-z

Article  PubMed  Google Scholar 

Woodley SJ, Lawrenson P, Boyle R et al (2020) Pelvic floor muscle training for preventing and treating urinary and faecal incontinence in antenatal and postnatal women. Cochrane Database Syst Rev 5:CD007471. https://doi.org/10.1002/14651858.CD007471.pub4

Article  PubMed  Google Scholar 

Okui N (2019) Efficacy and safety of non-ablative vaginal erbium:YAG laser treatment as a novel surgical treatment for overactive bladder syndrome: comparison with anticholinergics and β3-adrenoceptor agonists. World J Urol 37:2459–2466. https://doi.org/10.1007/s00345-019-02644-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ford AA, Rogerson L, Cody JD et al (2017) Mid-urethral sling operations for stress urinary incontinence in women. Cochrane Database Syst Rev 7:CD006375. https://doi.org/10.1002/14651858.CD006375.pub4

Article  PubMed  Google Scholar 

Okui N (2024) The potential of non-ablative erbium (YAG) laser treatment for complications after midurethral sling surgery: a narrative review. Cureus 16:e58486. https://doi.org/10.7759/cureus.58486

Article  PubMed  PubMed Central  Google Scholar 

Okui N (2024) Unsupervised machine learning reveals a vulvodynia-predominant subtype in bladder pain syndrome/interstitial cystitis. Cureus 16:e62585. https://doi.org/10.7759/cureus.62585

Article  PubMed  PubMed Central  Google Scholar 

Okui N (2024) Navigating treatment choices for stress and urgency urinary incontinence using graph theory in discrete mathematics. Cureus 16:e61315. https://doi.org/10.7759/cureus.61315

Article  PubMed  PubMed Central  Google Scholar 

Okui N (2024) Innovative decision making tools using discrete mathematics for stress urinary incontinence treatment. Sci Rep 14:9900. https://doi.org/10.1038/s41598-024-60407-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okui N (2019) Comparison between erbium-doped yttrium aluminum garnet laser therapy and sling procedures in the treatment of stress and mixed urinary incontinence. World J Urol 37:885–889. https://doi.org/10.1007/s00345-018-2445-x

Article  PubMed  Google Scholar 

Dindorf C, Bartaguiz E, Gassmann F, Fröhlich M (2022) Conceptual structure and current trends in artificial intelligence, machine learning, and deep learning research in sports: a bibliometric review. Int J Environ Res Public Health 20:173. https://doi.org/10.3390/ijerph20010173

Article  PubMed  PubMed Central  Google Scholar 

Obama B (2016) United States health care reform: progress to date and next steps. JAMA 316:525–532. https://doi.org/10.1001/jama.2016.9797

Article  PubMed  PubMed Central  Google Scholar 

Gotoh M, Asakura H, Takei M et al (2019) Clinical edition, 2nd ed. The Japanese Continence Society, The Japanese Urological Association

Harada D, Asanoi H, Noto T, Takagawa J (2020) Different pathophysiology and outcomes of heart failure with preserved ejection fraction stratified by K-means clustering. Front Cardiovasc Med 7:607760. https://doi.org/10.3389/fcvm.2020.607760

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harada D, Asanoi H, Noto T, Takagawa J (2020) The impact of right ventricular dysfunction on the effectiveness of beta-blockers in heart failure with preserved ejection fraction. J Cardiol 76:325–334. https://doi.org/10.1016/j.jjcc.2020.05.001

Article  PubMed  Google Scholar 

Guazzi M, Dixon D, Labate V et al (2017) RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging 10:1211–1221. https://doi.org/10.1016/j.jcmg.2016.12.024

Article  PubMed  Google Scholar 

Mohammadi T, D’Ascenzo F, Pepe M et al (2023) Unsupervised machine learning with cluster analysis in patients discharged after an acute coronary syndrome: insights from a 23,270-patient study. Am J Cardiol 193:44–51. https://doi.org/10.1016/j.amjcard.2023.01.048

Article  PubMed  Google Scholar 

Lenz A, Bahr F, Riedel C et al (2024) Cluster analysis of 100 Marfan patients based on aortic 4D flow MRI and Z-score: insights into disease heterogeneity and stratification of subgroups. Eur Radiol. https://doi.org/10.1007/s00330-024-11034-6

Article  PubMed  Google Scholar 

Flores AM, Schuler A, Eberhard AV et al (2021) Unsupervised learning for automated detection of coronary artery disease subgroups. J Am Heart Assoc 10:e021976. https://doi.org/10.1161/JAHA.121.021976

Article  PubMed  PubMed Central  Google Scholar 

Hoefnagel SJM, Koemans WJ, Khan HN et al (2022) Identification of novel molecular subgroups in esophageal adenocarcinoma to predict response to neo-adjuvant therapies. Cancers (Basel) 14:4498. https://doi.org/10.3390/cancers14184498

Article  CAS  PubMed  Google Scholar 

Ling C, Zhou X, Gao Y, Sui X (2022) Identification of immune subtypes of esophageal adenocarcinoma to predict prognosis and immunotherapy response. Pharmaceuticals (Basel) 15:605. https://doi.org/10.3390/ph15050605

Article  CAS  PubMed  Google Scholar 

Chan C, Law BMH, So W, Chow K, Waye M (2017) Novel strategies on personalized medicine for breast cancer treatment: an update. Int J Mol Sci 18:2423. https://doi.org/10.3390/ijms18112423

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lumachi F, Chiara GB, Foltran L, Basso SM (2015) Proteomics as a guide for personalized adjuvant chemotherapy in patients with early breast cancer. Cancer Genomics Proteomics 12:385–390 (PMID: 26543084)

CAS  PubMed  Google Scholar 

Liang M, Huang J, Liu C, Chen M (2024) Predictive modeling of long-term prognosis after resection in typical pulmonary carcinoid: a machine learning perspective. Cancer Investig 42:544–558. https://doi.org/10.1080/07357907.2024.2356002

Comments (0)

No login
gif