Thermo-optic coefficient of lithium niobate LN using optical interferometric technique

G. Rego, Temperature dependence of the thermo-optic coefficient of SiO2 glass. Sensors. 23, 6023 (2023)

Article  ADS  Google Scholar 

J.K. Rakshit, M. Hossain, Design and analysis of an efficient reversible hybrid new gate using silicon micro-ring resonator-based all-optical switch. Photon Netw. Commun. 44, 116–132 (2022)

Article  Google Scholar 

M.P. Singh, M. Hossain, J.K. Rakshit et al., Proposal for polarization rotation–based ultrafast all optical switch in ring resonator. Braz. J. Phys. 51, 1763–1774 (2021)

Article  ADS  Google Scholar 

G. Coppola, L. Sirleto, I. Rendina et al., Advance in thermo-optical switches: principles, materials, design, and device structure. Opt. Eng. 50, 071112 (2011)

Article  ADS  Google Scholar 

Fakhri MA, Wahid MHA, Badr BA, et al. (2017). Enhancement of Lithium Niobate nanophotonic structures via spin-coating technique for optical waveguides application. EPJ Web of Conferences: EDP Sciences; 162: 01004

A.S. Abdullah, S.A. Hbeeb, The ordinary negative changing refractive index for estimation of optical confinement factor. Int. J. on Smart Sens. Intell. Syst. (2022). https://doi.org/10.2478/ijssis-2022-0009

Article  Google Scholar 

R. De Nalda, R. Del Coso, J. Requejo-Isidro et al., Limits to the determination of the nonlinear refractive index by the Z-scan method. JOSA B. 19, 289–296 (2002)

Article  ADS  Google Scholar 

V. Anjos, M.J.V. Bell, E.A. de Vasconcelos et al., Thermal-lens and photo-acoustic methods for the determination of SiC thermal properties. Microelectron. J. 36, 977–980 (2005)

Article  Google Scholar 

P. Ščajev, K. Jarašiūnas, Application of a time-resolved four-wave mixing technique for the determination of thermal properties of 4H–SiC crystals. J. Phys. D Appl. Phys. 42, 055413 (2009)

Article  ADS  Google Scholar 

N.A. Riza, M. Arain, F. Perez, 6-H single-crystal silicon carbide thermo-optic coefficient measurements for ultrahigh temperatures up to 1273 K in the telecommunications infrared band. J. appl. phys. (2005). https://doi.org/10.1063/12133897

Article  Google Scholar 

L. Moretti, L. De Stefano, A. Mario Rossi, I. Rendina, Dispersion of thermo-optic coefficient in porous silicon layers of different porosities. Appl. Phys. Letters. (2005). https://doi.org/10.1063/11857077

Article  Google Scholar 

G. Ghosh, Thermo-optic coefficients of LiNbO 3, LiIO 3, and LiTaO 3 nonlinear crystals. Opt. Lett. 19, 1391–1393 (1994)

Article  ADS  Google Scholar 

S. Rao, E.D. Mallemace, G. Cocorullo et al., Temperature dependence of the thermo-optic coefficient in 4H-SiC and GaN slabs at the wavelength of 1550 nm. Sci. Rep. 12, 4809 (2022)

Article  ADS  Google Scholar 

F.G. Della Corte, G. Cocorullo, M. Iodice et al., Temperature dependence of the thermo-optic coefficient of InP GaAs and SiC from room temperature to 600 K at the wavelength of 15 μm. Appl. Phys. Letters. 77, 1614–6 (2000)

Article  ADS  Google Scholar 

D.H. Jundt, Temperature-dependent Sellmeier equation for the index of refraction, n e, in congruent lithium niobate. Opt. Lett. 22, 1553–1555 (1997)

Article  ADS  Google Scholar 

N. Umemura, D. Matsuda, T. Mizuno et al., Sellmeier and thermo-optic dispersion formulas for the extraordinary ray of 5 mol% MgO-doped congruent LiNbO 3 in the visible, infrared, and terahertz regions. Appl. optics. 53, 5726–32 (2014)

Article  ADS  Google Scholar 

Salim ET, Fakhri MA, Tareq Z, et al., Electrical and electronic properties of lithium based thin film for photonic application. AIP Conference Proceedings: AIP Publishing; 2213 (2020).

D. Martín-Sánchez, M. Kovylina, S. Ponce-Alcántara et al., Thermo-optic coefficient of porous silicon in the infrared region and oxidation process at low temperatures. J. Electrochem. Soc. 166, B355 (2019)

Article  Google Scholar 

J. Šik, J. Hora, Humlı́ček J, Optical functions of silicon at high temperatures. J. Appl. Phys. 84, 6291–6298 (1998)

Article  ADS  Google Scholar 

H.J. Hoffmann, W.W. Jochs, G. Westenberger, October). dispersion formula for the thermo-optic coefficient of optical glasses. Prop. Charact. Opt. Glass II. 1327, 219–230 (1990)

Google Scholar 

L. Moretti, M. Iodice, F.G. Della Corte et al., Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions. J Appl Phys. (2005). https://doi.org/10.1063/11988987

Article  Google Scholar 

H. Lin, S. Yu, C. Shi et al., Extended Sellmeier equation for the extraordinary refractive index of 5% MgO-doped congruent LiNbO3 at high temperature. AIP Adv. (2017). https://doi.org/10.1063/14994104

Article  Google Scholar 

D. Matsuda, T. Mizuno, N. Umemura, Temperature-dependent phase-matching properties with oo-e and oo-o interactions in 5mol% MgO doped congruent LiNbO3. Nonlinear Freq. Gener. Conver: Mater., Dev. Appl. XIV: SPIE 9347, 326–333 (2015)

Google Scholar 

J. Mangin, P. Strimer, L. Lahlou-Kassi, An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials. Meas. Sci. Technol. 4, 826 (1993)

Article  ADS  Google Scholar 

H.L. Saadon, N. Théofanous, M. Aillerie et al., Thermo-optic effects in electro-optic crystals used in an intensity-modulation system. – Application in LiTaO3. Appl. Phys. B. 83, 609–17 (2006)

Article  ADS  Google Scholar 

Bass M, Stryland EWV, Williams DR, et al., Handbook of optics volume ii devices, measurements. Handbook of Optics Volume II Devices. (1995).

O. Gayer, Z. Sacks, E. Galun et al., Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B 91, 343–348 (2008)

Article  ADS  Google Scholar 

G. Edwards, M. Lawrence, A temperature-dependent dispersion equation for congruently grown lithium niobate. Opt. Quant. Electron. 16, 373–375 (1984)

Article  Google Scholar 

H. Shen, H. Xu, Z. Zeng et al., Measurement of refractive indices and thermal refractive-index coefficients of LiNbO 3 crystal doped with 5 mol.% MgO. Appl. optics. 31, 6695–7 (1992)

Article  ADS  Google Scholar 

Comments (0)

No login
gif