All Inorganic Cesium-Based Dual Light Absorber For Efficiency Enhancement In Solar Cells

A. Haddout, A. Raidou, M. Fahoume, A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 125(2), 124 (2019)

Article  ADS  Google Scholar 

H.-S. Kim, S.H. Im, N.-G. Park, Organolead Halide Perovskite: New Horizons in Solar Cell Research. J. Phys. Chem. C 118(11), 5615–5625 (2014)

Article  Google Scholar 

S. Bhattarai, A. Mhamdi, I. Hossain, Y. Raoui, R. Pandey, J. Madan, A. Bouazizi, M. Maiti, D. Gogoi, A.J.M. Sharma, Nanostructures, A detailed review of perovskite solar cells: introduction, working principle, modelling, fabrication techniques, future challenges, 207450, (2022)

A. Tara, V. Bharti, S. Sharma, R. Gupta, Device simulation of FASnI3 based perovskite solar cell with zn(O0.3, S0.7) as electron transport layer using SCAPS-1D. Opt. Mater. 119, 111362 (2021)

Article  Google Scholar 

Y. Reyna, M. Salado, S. Kazim, A. Pérez-Tomas, S. Ahmad, M. Lira-Cantu, Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy. 30, 570–579 (2016)

Article  Google Scholar 

N. Shrivastav, J. Madan, R. Pandey, Predicting photovoltaic efficiency in Cs-based perovskite solar cells: a comprehensive study integrating SCAPS simulation and machine learning models. Solid State Commun. 380, 115437 (2024)

Article  Google Scholar 

J. Zhang, A. Zhong, G. Huang, M. Yang, D. Li, M. Teng, D. Han, Enhanced efficiency with CDCA co-adsorption for dye-sensitized solar cells based on metallosalophen complexes. Sol. Energy. 209, 316–324 (2020)

Article  ADS  Google Scholar 

J.-H. Lee, D.G. Lee, H.S. Jung, H.H. Lee, H.-K. Kim, ITO and electron transport layer-free planar perovskite solar cells on transparent Nb-doped anatase TiO2-x electrodes. J. Alloys Compd. 845, 155531 (2020)

Article  Google Scholar 

N. Shrivastav, J. Madan, R. Pandey, Maximizing performance in Cs₂CuBiCl₆ perovskite cells through machine learning-driven absorber layer parameter analysis. Mater. Lett. 359, 135929 (2024)

Article  Google Scholar 

A. Thakur, D. Singh, S.K. Gill, Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite nip solar cell, Materials Today: Proceedings, 71, 195–201, (2022)

C. Devi, and R. J. J. o. m. s. Mehra, Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide), 54 (7), 5615–5624, (2019)

T. Dureja, A. Garg, S. Bhalla, D. Bhutani, A. Khanna, Double lead-free perovskite solar cell for 19.9% conversion efficiency: A SCAPS-1D based simulation study, Materials Today: Proceedings, 71, 239–242, (2022)

M.I. Asghar, J. Zhang, H. Wang, P.D. Lund, Device stability of perovskite solar cells – A review. Renew. Sustain. Energy Rev. 77, 131–146 (2017)

Article  Google Scholar 

M.I. Ahmed, A. Habib, S.S. Javaid, Perovskite Solar Cells: Potentials, Challenges, and Opportunities, International Journal of Photoenergy, 2015, 592308, (2015)

M.K. Hossain, D. Samajdar, R.C. Das, A.A. Arnab, M. Rahman, M. Rubel, M.R. Islam, H. Bencherif, R. Pandey, J. Madan, M.K.A. Mohammed, Design and Simulation of Cs2BiAgI6 double Perovskite Solar cells with Different Electron Transport Layers for efficiency enhancement. Energy Fuels. 37, 3957–3979 (2023)

Article  Google Scholar 

Y. Wei, X. Sun, X. Meng, Z. Li, L. Zhang, K. Zhou, Z. Ma, Enhancing the properties of Cd-free MgZnS buffer for solar cells by co-sputtering ZnS and mg targets. Mater. Today Commun. 39, 108766 (2024)

Article  Google Scholar 

M. Alla, V. Manjunath, E. Choudhary, M. Samtham, S. Sharma, P. Shaikh, M. Rouchdi, B. Fares, Evaluating the potential of lead-free nontoxic Cs2BiAgI6-Based double Perovskite Solar Cell. Phys. Status Solidi (a), 220, (2022)

N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M.J.S. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, 358 (6364), 768–771, (2017)

S. Bhattarai, A. Sharma, T.D. Das, Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI3 active layer. Optik. 224, 165430 (2020)

Article  Google Scholar 

S. Bhattarai, R. Pandey, J. Madan, A. Mhamdi, A. Bouazizi, D. Muchahary, D. Gogoi, A. Sharma, T.D. Das, Investigation of Carrier Transport Materials for Performance Assessment of Lead-Free Perovskite Solar Cells. IEEE Trans. Electron. Devices. 69(6), 3217–3224 (2022)

Article  ADS  Google Scholar 

A. Pathania, J. Madan, R. Pandey, R.J.A.P.A. Sharma, Effect of structural and temperature variations on perovskite/Mg 2 Si based monolithic tandem solar cell structure, 126, 1–12, (2020)

G.S. Sahoo, S. Bhattarai, E. Feddi, M. Verma, A.N.Z. Rashed, O. Saidani, G.P. Mishra, Unveiling the potential of lead-free Cs2AgBiBr6 (CABB) perovskite for solar cell application. Sol. Energy Mater. Sol. Cells. 271, 112873 (2024)

Article  Google Scholar 

S. Bhattarai, T.D. Das, Optimization of carrier transport materials for the performance enhancement of the MAGeI3 based perovskite solar cell. Sol. Energy. 217, 200–207 (2021)

Article  ADS  Google Scholar 

S. Bhattarai, Designing a more efficient CsSnI3 based perovskite solar cell with novel bio-synthesized ZnO-NP as ETL. Mater. Chem. Phys. 318, 129269 (2024)

Article  Google Scholar 

A. Pathania, R. Pandey, J. Madan, R.J. Sharma, Design and optimization of 26.3% efficient perovskite/FeSi2 monolithic tandem solar cell, 31 (18), 15218–15224, (2020)

M.A. Nalianya, C. Awino, H. Barasa, V. Odari, F. Gaitho, B. Omogo, M. Mageto, Numerical study of lead free CsSn0.5Ge0.5I3 perovskite solar cell by SCAPS-1D. Optik. 248, 168060 (2021)

Article  Google Scholar 

S. Bonabi Naghadeh, B. Luo, G. Abdelmageed, Y.-C. Pu, C. Zhang, J.Z. Zhang, Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation. J. Phys. Chem. C 122(28), 15799–15818 (2018)

Article  Google Scholar 

A. Kheralla, N. Chetty, A review of experimental and computational attempts to remedy stability issues of perovskite solar cells. Heliyon, 7 (2), e06211, (2021)

S. Pitchaiya, M. Natarajan, A. Santhanam, V. Asokan, A. Yuvapragasam, V. Madurai Ramakrishnan, S.E. Palanisamy, S. Sundaram, D. Velauthapillai, A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem. 13(1), 2526–2557 (2020)

Article  Google Scholar 

T. Tang, Y. Tang, First principle comparative study of transitional elements Co, Rh, ir(III)-based double halide perovskites. Mater. Today Commun. 34, 105431 (2023)

Article  Google Scholar 

A. Khaliq, X. Zhou, H. Chai, M. Ali, H. Wu, O. Gassab, H. Liu, D. Xiao, X.-G. Yang, S. Du, Illumination Induced negative Differential Resistance in InGaAs Avalanche Photodiode. IEEE Access., (2024)

I. López-Fernández, D. Valli, C.-Y. Wang, S. Samanta, T. Okamoto, Y.-T. Huang, K. Sun, Y. Liu, V.S. Chirvony, A. Patra, J. Zito, L. De Trizio, D. Gaur, H.-T. Sun, Z. Xia, X. Li, H. Zeng, I. Mora-Seró, N. Pradhan, J.P. Martínez-Pastor, P. Müller-Buschbaum, V. Biju, T. Debnath, M. Saliba, E. Debroye, R.L.Z. Hoye, I. Infante, L. Manna, L. Polavarapu, Lead-free Halide Perovskite materials and Optoelectronic devices: Progress and prospective. Adv. Funct. Mater. 34(6), 2307896 (2024)

Article  Google Scholar 

M.A.U. Islam, S. Kato, T. Soga, An experimental and Simulation Study of Cu6BiAgI10 Photovoltaics with various Organic and Inorganic Hole Transport Layers for the Improved Photovoltaic Performance of Solar cells. Energy Fuels. 37(24), 19882–19897 (2023)

Article  Google Scholar 

H. Wu, A. Erbing, M.B. Johansson, J. Wang, C. Kamal, M. Odelius, E.M.J. Johansson, Mixed-Halide Double Perovskite Cs2AgBiX6 (X = Br, I) with Tunable Optical Properties via Anion Exchange, ChemSusChem, 14 (20), 4507–4515, (2021)

M. Burgelman, J. Marlein, Analysis of graded band gap solar cells with SCAPS, Proceedings of the 23rd European Photovoltaic Conference, (2008)

S. Rai, B.K. Pandey, D.K. Dwivedi, Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation. Opt. Mater. 100, 109631 (2020)

Article  Google Scholar 

S. Rai, B. Pandey, D.J.O.M. Dwivedi, Modeling of highly efficient and low cost CH3NH3Pb (I1-xClx) 3 based perovskite solar cell by numerical simulation, 100, 109631, (2020)

J. Xu, X. Shi, J. Chen, J. Luan, J.J.J. o., S.S.C. Yao, Optimizing solution-processed C60 electron transport layer in planar perovskite solar cells by interfacial modification with solid-state ionic-liquids, 276, 302–308, (2019)

F. Azri, A. Meftah, N. Sengouga, A. Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy, 181, (2019)

M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Modeling thin-film PV devices. Prog. Photovoltaics Res. Appl. 12, 143–153 (2004)

Article  Google Scholar 

S. Bhattarai, A. Sharma, T.D. Das, Factor affecting the performance of perovskite solar cell for distinct MAPI layer thickness, AIP Conference Proceedings, 2269 (1), 030071, (2020)

A.D. Adewoyin, M.A. Olopade, M. Chendo, Prediction and optimization of the performance characteristics of CZTS thin film solar cell using band gap grading. Opt. Quant. Electron. 49(10), 336 (2017)

Article  Google Scholar 

B.K. Ravidas, M.K. Roy, D.P. Samajdar, Investigation of photovoltaic performance of lead-free CsSnI3-based perovskite solar cell with different hole transport layers: First Principle calculations and SCAPS-1D analysis. Sol. Energy. 249, 163–173 (2023)

Article  ADS  Google Scholar 

M. Kumar, S. Kumar, Investigation of all Inorganic lead-free Perovskite CsSnI3/Silicon Heterojunction Solar Cell using SCAPS-1D. Adv. Theory Simulations. 6(11), 2300401 (2023)

Article  Google Scholar 

H.-J. Du, W.-C. Wang, J.-Z.J.C.P.B. Zhu, Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency, 25 (10), 108802, (2016)

Comments (0)

No login
gif