Molitch ME (2017) Diagnosis and treatment of pituitary adenomas: a review. JAMA 317(5):516–524. https://doi.org/10.1001/jama.2016.19699
Jameson J, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J (2018) Harrisons Principle of Internal Medicine 20t Edition. McGraw-Hill Education, New York
Cooper O, Melmed S (2012) Subclinical hyperfunctioning pituitary adenomas: the silent tumors. Best Pract Res Clin Endocrinol Metab 26(4):447–460. https://doi.org/10.1016/j.beem.2012.01.002
Article CAS PubMed PubMed Central Google Scholar
Ben-Shlomo A, Cooper O (2018) Silent corticotroph adenomas. Pituitary 21(2):183–193. https://doi.org/10.1007/s11102-018-0864-8
Article CAS PubMed Google Scholar
Zinngrebe J, Montinaro A, Peltzer N, Walczak H (2014) Ubiquitin in the immune system. [published correction appears in EMBO Rep. 2014;15(3):322]. EMBO Rep 15(1):28–45. https://doi.org/10.1002/embr.201338025
Ma ZY, Song ZJ, Chen JH et al (2015) Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res 25:306–317. https://doi.org/10.1038/cr.2015.20
Article CAS PubMed PubMed Central Google Scholar
Wanichi IQ, de Paula Mariani BM, Frassetto FP et al (2019) Cushing’s disease due to somatic USP8 mutations: a systematic review and meta-analysis. Pituitary 22(4):435–442. https://doi.org/10.1007/s11102-019-00973-9
Bujko M, Kober P, Boresowicz J et al (2019) USP8 mutations in corticotroph adenomas determine a distinct gene expression profile irrespective of functional tumour status. Eur J Endocrinol 181(6):615–627. https://doi.org/10.1530/eje-19-0194
Article CAS PubMed Google Scholar
Komada M (2015) Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet 47:31–38. https://doi.org/10.1038/ng.3166
Article CAS PubMed Google Scholar
Perez-Rivas LG, Theodoropoulou M, Ferraù F et al (2015) The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing cushing’s disease. J Clin Endocrinol Metab 100(7):E997–E1004. https://doi.org/10.1210/jc.2015-1453
Article PubMed PubMed Central Google Scholar
Hayashi K, Inoshita N, Kawaguchi K et al (2016) The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing’s disease. Eur J Endocrinol 174(2):213–226. https://doi.org/10.1530/EJE-15-0689
Article CAS PubMed Google Scholar
Losa M, Mortini P, Pagnano A et al (2019) Clinical characteristics and surgical outcome in USP8-mutated human adrenocorticotropic hormone-secreting pituitary adenomas. Endocrine 63:240–246. https://doi.org/10.1007/s12020-018-1776-0
Article CAS PubMed Google Scholar
Centorrino F, Ballone A, Wolter M, Ottmann C (2018) Biophysical and structural insight into the USP8/14-3-3 interaction. FEBS Lett
Mizuno E, Kitamura N, Komada M (2007) 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase. Exp Cell Res 313:3624–3634. https://doi.org/10.1016/j.yexcr.2007.07.028
Article CAS PubMed Google Scholar
Kober P, Boresowicz J, Rusetska N et al (2018) DNA methylation profiling in nonfunctioning pituitary adenomas. Mol Cell Endocrinol 473:194–204. https://doi.org/10.1016/j.mce.2018.01.020
Article CAS PubMed Google Scholar
Sjöstedt E, Zhong W, Fagerberg L et al (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science (1979) 367(6482):eaay5947. https://doi.org/10.1126/science.aay5947
Lee M-H, Lozano G (2006) Regulation of the p53-MDM2 pathway by 14-3-3 σ and other proteins. Semin Cancer Biol 16:225–234. https://doi.org/10.1016/j.semcancer.2006.03.009
Article CAS PubMed Google Scholar
Qiu H, Kong J, Cheng Y, Li G (2018) The expression of ubiquitin-specific peptidase 8 and its prognostic role in patients with breast cancer. 119(12):10051–10058 J Cell Biochem. https://doi.org/10.1002/jcb.27337
Kim Y, Shiba-Ishii A, Nakagawa T et al (2017) Ubiquitin-specific protease 8 is a novel prognostic marker in early-stage lung adenocarcinoma. Pathol Int 67(6):292–301. https://doi.org/10.1111/pin.12546
Article CAS PubMed Google Scholar
Yan M, Zhao C, Wei N et al (2018) High expression of ubiquitin-specific protease 8 (USP8) is associated with poor prognosis in patients with cervical squamous cell carcinoma. Med Sci Monit 16:24:4934–4943. https://doi.org/10.12659/MSM.909235
Dufner A, Kisser A, Niendorf S et al (2015) The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nat Immunol 16(9):950–960. https://doi.org/10.1038/ni.3230
Article CAS PubMed Google Scholar
Zhu L, Bi W, Lu D et al (2015) Regulation of ubiquitin-specific processing protease 8 suppresses neuroinflammation. Mol Cell Neurosci 64:74–83. https://doi.org/10.1016/j.mcn.2014.05.004
Article CAS PubMed Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
Article CAS PubMed PubMed Central Google Scholar
Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337
Article CAS PubMed PubMed Central Google Scholar
Kim Y, Shiba-Ishii A, Nakagawa T et al (2018) Stratifin regulates stabilization of receptor tyrosine kinases via interaction with ubiquitin-specific protease 8 in lung adenocarcinoma. Oncogene 37:5387–5402. https://doi.org/10.1038/s41388-018-0342-9
Article CAS PubMed Google Scholar
Thorsson V, Gibbs DL, Brown SD et al (2019) The Immune Landscape of Cancer. Immunity 51:411–412. https://doi.org/10.1016/j.immuni.2019.08.004
Article CAS PubMed Google Scholar
Khosravi G, Mostafavi S, Bastan S et al (2024) Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun. 2024; 1–33. https://doi.org/10.1002/cac2.12539
Whickham H (2016) ggplot2: elegant graphics for data analysis. Springer-, New York
Kassambara A (2019) ggpubr: ggplot2 Based Publication Ready Plots. R package version 0.2.3. https://CRANR-project.org/package=ggpubr
Slenter DN, Kutmon M, Hanspers K et al (2018) WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res 46:D661–D667. https://doi.org/10.1093/nar/gkx1064
Article CAS PubMed Google Scholar
Jassal B, Matthews L, Viteri G et al (2019) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498–D503. https://doi.org/10.1093/nar/gkz1031
Article CAS PubMed Central Google Scholar
Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1093/nar/gkw377
Article CAS PubMed PubMed Central Google Scholar
Speiser DE, Chijioke O, Schaeuble K, Münz C (2023) CD4 + T cells in cancer. Nat Cancer 4:317–329. https://doi.org/10.1038/s43018-023-00521-2
Article CAS PubMed Google Scholar
Mantovani A, Allavena P, Marchesi F, Garlanda C (2022) Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov 21:799–820. https://doi.org/10.1038/s41573-022-00520-5
Comments (0)