Nguyen M, Joshi SG (2021) Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: a scientific review. J Appl Microbiol 131:2715–2738. https://doi.org/10.1111/jam.15130
Article CAS PubMed Google Scholar
Kinross P, Gagliotti C, Merk H, Plachouras D, Monnet DL, Högberg LD, EARS-Net Study Group (2022) Large increase in bloodstream infections with carbapenem-resistant Acinetobacter species during the first 2 years of the COVID-19 pandemic, EU/EEA, 2020 and 2021. Euro Surveill 27(46):2200845. https://doi.org/10.2807/1560-7917.ES.2022.27.46.2200845
Article CAS PubMed PubMed Central Google Scholar
Casarotta E, Bottari E, Vannicola S, Giorgetti R, Domizi R, Carsetti A, Damiani E, Scorcella C, Gabbanelli V, Pantanetti S, Marini B, Donati A, Adrario E (2022) Antibiotic Treatment of Acinetobacter baumannii Superinfection in Patients With SARS-CoV-2 Infection Admitted to Intensive Care Unit: An Observational Retrospective Study. Front Med 9:910031. https://doi.org/10.3389/fmed.2022.910031
Manchanda V, Sanchaita S, Singh NP (2010) Multidrug resistant Acinetobacter. J Glob Infect Dis 2(3):291–304. https://doi.org/10.4103/0974-777X.68538
Article PubMed PubMed Central Google Scholar
Shi J, Sun T, Cui Y, Wang C, Wang F, Zhou Y, Miao H, Shan Y, Zhang Y (2020) Multidrug resistant and extensively drug resistant Acinetobacter baumannii hospital infection associated with high mortality: a retrospective study in the pediatric intensive care unit. BMC Infect Dis 20:597. https://doi.org/10.1186/s12879-020-05321-y
Article CAS PubMed PubMed Central Google Scholar
Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP (2021) Systematic review of antimicrobial combination options for pandrug-resistant Acinetobacter baumannii. Antibiotics 10(11):1344. https://doi.org/10.3390/antibiotics10111344
Article CAS PubMed PubMed Central Google Scholar
Jenner L, Starosta AL, Terry DS, Mikolajka A, Filonava L, Yusupov M, Blanchard SC, Wilson DN, Yusupova G (2013) Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proc Natl Acad Sci USA 110(10):3812–3816. https://doi.org/10.1073/pnas.1216691110
Article PubMed PubMed Central Google Scholar
Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F (2022) Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis 41:1003–1022. https://doi.org/10.1007/s10096-020-04121-1
Article CAS PubMed Google Scholar
Sun C, Yu Y, Hua X (2023) Resistance mechanisms of tigecycline in Acinetobacter baumannii. Front Cell Infect Microbiol 13:1141490. https://doi.org/10.3389/fcimb.2023.1141490
Article CAS PubMed PubMed Central Google Scholar
Magnet S, Courvalin P, Lambert T (2001) Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45(12):3375–3380. https://doi.org/10.1128/AAC.45.12.3375-3380.2001
Article CAS PubMed PubMed Central Google Scholar
Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P (2008) AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52(2):557–562. https://doi.org/10.1128/AAC.00732-07
Article CAS PubMed Google Scholar
Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B (2010) Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 54(10):4389–4393. https://doi.org/10.1128/AAC.00155-10
Article CAS PubMed PubMed Central Google Scholar
Marchand I, Damier-Piolle L, Courvalin P, Lambert T (2004) Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 48(9):3298–3304. https://doi.org/10.1128/aac.48.9.3298-3304.2004
Article CAS PubMed PubMed Central Google Scholar
Rosenfeld N, Bouchier C, Courvalin P, Perichon B (2012) Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob Agents Chemother 56(5):2504–2510. https://doi.org/10.1128/AAC.06422-11
Article CAS PubMed PubMed Central Google Scholar
Wang Z, Li H, Zhang J, Wang X, Zhang Y, Wang H (2021) Identification of a novel plasmid-mediated tigecycline resistance-related gene, tet(Y). Acinetobacter baumannii J Antimicrob Chemother 77(1):58–68. https://doi.org/10.1093/jac/dkab375
Article CAS PubMed Google Scholar
Lin MF, Lin YY, Tu CC, Lan CY (2017) Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. J Microbiol Immunol Infect 50(2):224–231. https://doi.org/10.1016/j.jmii.2015.04.004
Article CAS PubMed Google Scholar
Deng M, Zhu MH, Li JJ, Bi S, Sheng ZK, Hu FS, Zhang JJ, Chen W, Xue XW, Sheng JF, Li LJ (2014) Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob Agents Chemother 58(1):297–303. https://doi.org/10.1128/aac.01727-13
Article PubMed PubMed Central Google Scholar
Cui CY, He Q, Jia QL, Li C, Chen C, Wu XT, Zhang XJ, Lin ZY, Zheng ZJ, Liao XP, Kreiswirth BN (2021) Evolutionary trajectory of the Tet(X) family: critical residue changes towards high-level tigecycline resistance. mSystems 6(3):e00050-21. https://doi.org/10.1128/mSystems.00050-21
Article CAS PubMed PubMed Central Google Scholar
Li X, Liu L, Ji J, Chen Q, Hua X, Jiang Y, Feng Y, Yu Y (2015) Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase. Eur J Clin Microbiol Infect Dis 34(3):625–631. https://doi.org/10.1007/s10096-014-2272-y
Article CAS PubMed Google Scholar
Chen Q, Li X, Zhou H, Jiang Y, Chen Y, Hua X, Yu Y (2014) Decreased susceptibility to tigecycline in Acinetobacter baumannii mediated by a mutation in trm encoding SAM-dependent methyltransferase. J Antimicrob Chemother 69(1):72–76. https://doi.org/10.1093/jac/dkt319
Article CAS PubMed Google Scholar
Hammerstrom TG, Beabout K, Clements TP, Saxer G, Shamoo Y (2015) Acinetobacter baumannii repeatedly evolves a hypermutator phenotype in response to tigecycline that effectively surveys evolutionary trajectories to resistance. PLoS ONE 10(10):e0140489. https://doi.org/10.1371/journal.pone.0140489
Article CAS PubMed PubMed Central Google Scholar
Nogbou ND, Nkawane GM, Ntshane K, Wairuri CK, Phofa DT, Mokgokong KK, Ramashia M, Nchabeleng M, Obi LC, Musyoki AM (2021) Efflux pump activity and mutations driving multidrug resistance in Acinetobacter baumannii at a tertiary hospital in Pretoria. South Africa Int J Microbiol 2021:9923816. https://doi.org/10.1155/2021/9923816
Article CAS PubMed Google Scholar
Seifert H, Blondeau J, Lucaßen K, Utt EA (2022) Global update on the in vitro activity of tigecycline and comparators against isolates of Acinetobacter baumannii and rates of resistant phenotypes (2016–2018). J Glob Antimicrob Resist 31:82–89. https://doi.org/10.1016/j.jgar.2022.08.002
Article CAS PubMed Google Scholar
Gajic I, Ranin L, Kekic D, Opavski N, Smitran A, Mijac V, Jovanovic S, Hadnadjev M, Travar M, Mijovic G (2020) Tigecycline susceptibility of multidrug-resistant Acinetobacter baumannii from intensive care units in the Western Balkans. Acta Microbiol Immunol Hung 67(3):176–181. https://doi.org/10.1556/030.2020.01079
Article CAS PubMed Google Scholar
Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother 57:154–155. https://doi.org/10.1093/jac/dki412
Comments (0)