Murray CJL, Ikuta KS, Sharara F et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
Ardal C, Balasegaram M, Laxminarayan R et al (2020) Antibiotic development - economic, regulatory and societal challenges. Nat Rev Microbiol 18(5):267–274. https://doi.org/10.1038/s41579-019-0293-3
Article PubMed CAS Google Scholar
Yahav D, Giske CG, Grāmatniece A et al (2020) New β-lactam–β-lactamase inhibitor combinations. Clin Microbiol Rev 34(1):10–1128. https://doi.org/10.1128/CMR.00115-20
Coleman K (2011) Diazabicyclooctanes (DBOs): a potent new class of non-beta-lactam beta-lactamase inhibitors. Curr Opin Microbiol 14(5):550–555. https://doi.org/10.1016/j.mib.2011.07.026
Article PubMed CAS Google Scholar
Boyd SE, Livermore DM, Hooper DC et al (2020) Metallo-beta-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother 64(10):10–1128. https://doi.org/10.1128/AAC.00397-20
Nichols WW, Bradford PA, Stone GG (2023) The primary pharmacology of ceftazidime/avibactam: microbiology from clinical studies, and development of resistance during treatment. J Antimicrob Chemother 78(4):871–892. https://doi.org/10.1093/jac/dkad049
Article PubMed CAS Google Scholar
Nichols WW, Lahiri SD, Bradford PA et al (2022) The primary pharmacology of ceftazidime/avibactam: resistance in vitro translational biology. J Antimicrob Chemother 77(9):2321–2340. https://doi.org/10.1093/jac/dkac171
Article PubMed CAS Google Scholar
Jean SS, Lu MC, Shi ZY et al (2018) In vitro activity of ceftazidime-avibactam, ceftolozane-tazobactam, and other comparable agents against clinically important Gram-negative bacilli: results from the 2017 Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infect Drug Resist 11:1983–1992. https://doi.org/10.2147/IDR.S175679
Article PubMed PubMed Central CAS Google Scholar
Liao CH, Lee NY, Tang HJ et al (2019) Antimicrobial activities of ceftazidime-avibactam, ceftolozane-tazobactam, and other agents against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolated from intensive care units in Taiwan: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan in 2016. Infect Drug Resist 12:545–552. https://doi.org/10.2147/IDR.S193638
Article PubMed PubMed Central CAS Google Scholar
Huang YT, Kuo YW, Teng LJ et al (2021) (2021) Comparison of Etest and broth microdilution for evaluating the susceptibility of Staphylococcus aureus and Streptococcus pneumoniae to ceftaroline and of carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa to ceftazidime/avibactam. J Glob Antimicrob Resist 26:301–307. https://doi.org/10.1016/j.jgar.2021.06.016
Article PubMed CAS Google Scholar
Lee YL, Ko WC, Lee WS et al (2021) In-vitro activity of cefiderocol, cefepime/zidebactam, cefepime/enmetazobactam, omadacycline, eravacycline and other comparative agents against carbapenem-nonsusceptible Enterobacterales: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2017–2020. Int J Antimicrob Agents 58(3):106377. https://doi.org/10.1016/j.ijantimicag.2021.106377
Article PubMed CAS Google Scholar
Di Bella S, Giacobbe DR, Maraolo AE et al (2021) Resistance to ceftazidime/avibactam in infections and colonisations by KPC-producing Enterobacterales: a systematic review of observational clinical studies. J Glob Antimicrob Resist 25:268–281. https://doi.org/10.1016/j.jgar.2021.04.001
Article PubMed CAS Google Scholar
Lee JA, Du SH, Lee TF et al (2023) Rapid emergence of ceftazidime-avibactam resistance among carbapenem-resistant Enterobacterales in a tertiary-care hospital in Taiwan. J Infect 86(1):66–117. https://doi.org/10.1016/j.jinf.2022.10.003
Article PubMed CAS Google Scholar
Wu W, Feng Y, Tang G et al (2019) NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev 32(2):e00115-e118. https://doi.org/10.1128/CMR.00115-18
Article PubMed PubMed Central CAS Google Scholar
Boutzoukas AE, Komarow L, Chen L et al (2023) International epidemiology of carbapenemase-producing Escherichia coli. Clin Infect Dis 77(4):499–509. https://doi.org/10.1093/cid/ciad288
Article PubMed PubMed Central CAS Google Scholar
Falcone M, Tiseo G, Carbonara S et al (2023) Mortality attributable to bloodstream infections caused by different carbapenem-resistant gram-negative Bacilli: results from a nationwide study in Italy (ALARICO Network). Clin Infect Dis 76(12):2059–2069. https://doi.org/10.1093/cid/ciad100
Article PubMed CAS Google Scholar
CLSI. Performance standards for antimicrobial susceptibility testing. 33rd ed Approved standard, CLSI publication M100-S33 (2020). Clinical and Laboratory Standards Institute, Wayne, PA
Poirel L, Heritier C, Tolun V et al (2004) Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48(1):15–22. https://doi.org/10.1128/AAC.48.1.15-22.2004
Article PubMed PubMed Central CAS Google Scholar
Poirel L, Walsh TR, Cuvillier V et al (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70(1):119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002
Article PubMed CAS Google Scholar
Wang CH, Ma L, Huang LY et al (2021) Molecular epidemiology and resistance patterns of blaOXA-48 Klebsiella pneumoniae and Escherichia coli: A nationwide multicenter study in Taiwan. J Microbiol Immunol Infect 54(4):665–672. https://doi.org/10.1016/j.jmii.2020.04.006
Article PubMed CAS Google Scholar
Huang YT, Chang SC, Lauderdale TL et al (2007) Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa carrying metallo-β-lactamase genes in Taiwan. Diagn Microbiol Infect Dis 59(2):211–216. https://doi.org/10.1016/j.diagmicrobio.2007.01.009
Article PubMed CAS Google Scholar
Zavascki AP, Barth AL, Goncalves AL et al (2006) The influence of metallo-beta-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J Antimicrob Chemother 58(2):387–392. https://doi.org/10.1093/jac/dkl239
Article PubMed CAS Google Scholar
Aoki K, Harada S, Yahara K et al (2018) Molecular characterization of IMP-1-producing Enterobacter cloacae complex isolates in Tokyo. Antimicrob Agents Chemother 62(3):10–1128. https://doi.org/10.1128/AAC.02091-17
Gartzonika K, Politi L, Mavroidi A et al (2023) High prevalence of clonally related ST182 NDM-1-producing Enterobacter cloacae complex clinical isolates in Greece. Int J Antimicrob Agents 62(1):106837. https://doi.org/10.1016/j.ijantimicag.2023.106837
Article PubMed CAS Google Scholar
Wilson BM, El Chakhtoura NG, Patel S et al (2017) Carbapenem-resistant Enterobacter cloacae in patients from the US Veterans Health Administration, 2006–2015. Emerg Infect Dis 23(5):878. https://doi.org/10.3201/eid2305.162034
Article PubMed PubMed Central Google Scholar
Han M, Liu C, Xie H et al (2023) Genomic and clinical characteristics of carbapenem-resistant Enterobacter cloacae complex isolates collected in a Chinese tertiary hospital during 2013–2021. Front Microbiol 14:1127948. https://doi.org/10.3389/fmicb.2023.1127948
Article PubMed PubMed Central Google Scholar
Bianco G, Boattini M, Comini S et al (2022) Occurrence of multi-carbapenemases producers among carbapenemase-producing Enterobacterales and in vitro activity of combinations including cefiderocol, ceftazidime-avibactam, meropenem-vaborbactam, and aztreonam in the COVID-19 era. Eur J Clin Microbiol Infect Dis 41(4):573–580. https://doi.org/10.1007/s10096-022-04408-5
Comments (0)