O’Neill, J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations https://amr-review.org/Publications.html (Review on Antimicrobial Resistance, 2014).
Willyard, A. The drug-resistant bacteria that pose the greatest health threats. Nature 543, 15 (2017).
Article CAS PubMed Google Scholar
Murray, B. E. Vancomycin-resistant enterococcal infections. N. Engl. J. Med. 342, 710–721 (2000).
Article CAS PubMed Google Scholar
Arias, C. A., Contreras, G. A. & Murray, B. E. Management of multidrug-resistant enterococcal infections. Clin. Nicrobiol. Infect. 16, 555–562 (2010).
Kakinuma, Y., Yamato, I. & Murata, T. Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae. J. Bioenerg. Biomembr. 31, 7–14 (1999).
Article CAS PubMed Google Scholar
Murata, T., Yamao, I., Igarashi, K. & Kakinuma, Y. Intracellular Na+ regulates transcription of the ntp operon encoding a vacuolar-type Na+-translocating ATPase in Enterococcus hirae. J. Biol. Chem. 271, 23661–23666 (1996).
Article CAS PubMed Google Scholar
Murata, T., Takase, K., Yamato, I., Igarashi, K. & Kakinuma, Y. The ntpJ gene in the Enterococcus hirae ntp operon encodes a component of KtrII potassium transport system functionally independent of vacuolar Na+-ATPase. J. Biol. Chem. 271, 10042–10047 (1996).
Article CAS PubMed Google Scholar
Shimizu, K., Seiki, I., Goto, Y. & Murata, T. Measurement of the intestinal pH in mice under various conditions reveals alkalization induced by antibiotics. Antibiotics 10, 180 (2021).
Article CAS PubMed PubMed Central Google Scholar
Saijo, S. et al. Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. Proc. Natl Acad. Sci. USA 108, 19955–19960 (2011).
Article CAS PubMed PubMed Central Google Scholar
Arai, S. et al. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 493, 703–707 (2013).
Article CAS PubMed Google Scholar
Suzuki, K. et al. Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor. Nat. Commun. 7, 13235 (2016).
Article CAS PubMed PubMed Central Google Scholar
Maruyama, S. et al. Metastable asymmetrical structure of a shaftless V1 motor. Sci. Adv. 5, eaau8149 (2019).
Article PubMed PubMed Central Google Scholar
Minagawa, Y. et al. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase. J. Biol. Chem. 288, 32700–32707 (2013).
Article CAS PubMed PubMed Central Google Scholar
Iida, T. et al. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V1-ATPase. J. Biol. Chem. 294, 17017–17030 (2019).
Article CAS PubMed PubMed Central Google Scholar
Isaka, Y. et al. Rotation mechanism of molecular motor V1-ATPase studied by multiscale molecular dynamics simulation. Biophys. J. 112, 911–920 (2017).
Article CAS PubMed PubMed Central Google Scholar
Shekhar, M. et al. Revealing a hidden intermediate of rotatory catalysis with X-ray crystallography and molecular simulations. ACS Cent. Sci. 8, 915–925 (2022).
Article CAS PubMed PubMed Central Google Scholar
Murata, T., Igarashi, K., Kakinuma, Y. & Yamato, I. Na+ binding of V-type Na+-ATPase in Enterococcus hirae. J. Biol. Chem. 275, 13415–13419 (2000).
Article CAS PubMed Google Scholar
Murata, T., Takase, K., Yamato, I., Igarashi, K. & Kakinuma, Y. Purification and reconstitution of Na+-translocating vacuolar ATPase from Enterococcus hirae. J. Biol. Chem. 272, 24885–24890 (1997).
Article CAS PubMed Google Scholar
Murata, T., Takase, K., Yamato, I., Igarashi, K. & Kakinuma, Y. Properties of the VOV1 Na+-ATPase from Enterococcus hirae and its VO moiety. J. Biochem. 125, 414–421 (1999).
Article CAS PubMed Google Scholar
Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. & Walker, J. E. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science 308, 654–659 (2005).
Article CAS PubMed Google Scholar
Mizutani, K. et al. Structure of the rotor ring modified with N,N′-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase. Proc. Natl Acad. Sci. USA 108, 13474–13479 (2011).
Article CAS PubMed PubMed Central Google Scholar
Murata, T. et al. Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase. Proc. Natl Acad. Sci. USA 105, 8607–8612 (2008).
Article CAS PubMed PubMed Central Google Scholar
Zhou, M. et al. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334, 380–385 (2011).
Article CAS PubMed PubMed Central Google Scholar
Murata, T., Yamato, I. & Kakinuma, Y. Structure and mechanism of vacuolar Na+-translocating ATPase from Enterococcus hirae. J. Bioenerg. Biomembr. 37, 411–413 (2005).
Article CAS PubMed Google Scholar
Murata, T., Kawano, M., Igarashi, K., Yamato, I. & Kakinuma, Y. Catalytic properties of Na+-translocating V-ATPase in Enterococcus hirae.Biochim. Biophys. Acta 1505, 75–81 (2001).
Article CAS PubMed Google Scholar
Guo, H., Bueler, S. A. & Rubinstein, J. L. Atomic model for the dimeric FO region of mitochondrial ATP synthase. Science 358, 936–940 (2017).
Article CAS PubMed PubMed Central Google Scholar
Srivastava, A. P. et al. High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science 360, eaas9699 (2018).
Article PubMed PubMed Central Google Scholar
Murphy, B. J. et al. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1–FO coupling. Science 364, eaaw9128 (2019).
Article CAS PubMed Google Scholar
Spikes, T. E., Montgomery, M. G. & Walker, J. E. Structure of the dimeric ATP synthase from bovine mitochondria. Proc. Natl Acad. Sci. USA 117, 23519–23526 (2020).
Article CAS PubMed PubMed Central Google Scholar
Demmer, J. K. et al. Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii. Sci. Adv. 8, eabl5966 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhou, L. & Sazanov, L. A. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science 365, eaaw9144 (2019).
Comments (0)