Polymer-Based Antimicrobial Peptide Mimetics for Treating Multi-drug Resistant Infections: Therapy and Toxicity Evaluation

Aisverya S, Venkatesan J, Anil S, Kim SK, Ahmed S, Sudha PN (2017) Antimicrobial competence of prepared chitosan-based composites. J Adv Mater 1:22–30

Google Scholar 

Al-Badri ZM, Som A, Lyon S, Nelson CF, Nüsslein K, Tew GN (2008) Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromol 9(10):2805–2810. https://doi.org/10.1021/bm800569x

Article  CAS  Google Scholar 

Alfei S, Schito AM (2020) Positively charged polymers as promising devices against multidrug resistant gram-negative bacteria: a review. Polymers 12(5):1195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aljeldah MM (2022) Antimicrobial resistance and its spread is a global threat. Antibiotics 11(8):1082. https://doi.org/10.3390/antibiotics11081082

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alkatheri AH, Yap PS-X, Abushelaibi A, Lai K-S, Cheng W-H, Lim S-HE (2022) Host–bacterial interactions: outcomes of antimicrobial peptide applications. Membranes 12(7):715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almutairy B (2024) Extensively and multidrug-resistant bacterial strains: case studies of antibiotics resistance. Front Microbiol. https://doi.org/10.3389/fmicb.2024.1381511

Article  PubMed  PubMed Central  Google Scholar 

Altena K, Guder A, Cramer C, Bierbaum G (2000) Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 66(6):2565–2571. https://doi.org/10.1128/AEM.66.6.2565-2571.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antinate Shilpa S, Subbulakshmi MS, Hikku GS (2022) Nanoparticles of metal/metal oxide embedded fabrics to impart antibacterial activity to counteract hospital acquired infections. Eng Res Express 4(3):032002. https://doi.org/10.1088/2631-8695/ac8f1c

Article  CAS  Google Scholar 

Ashjaran M, Babazadeh M, Akbarzadeh A, Davaran S, Salehi R (2019) Stimuli-responsive polyvinylpyrrolidone-NIPPAm-lysine graphene oxide nano-hybrid as an anticancer drug delivery on MCF7 cell line. Artif Cells Nanomed Biotechnol 47(1):443–454. https://doi.org/10.1080/21691401.2018.1543198

Article  CAS  PubMed  Google Scholar 

Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aslani R, Namazi H (2022) Simple fabrication of multifunctional hyperbranched copolymer based on l-lysine and citric acid for co-delivery of anticancer drugs to breast cancer cells. React Funct Polym 170:105101. https://doi.org/10.1016/j.reactfunctpolym.2021.105101

Article  CAS  Google Scholar 

Augustine R, Kim D-K, Kim HA, Kim JH, Kim I (2020) Poly(N-isopropylacrylamide)-b-poly(L-lysine)-b-poly(L-histidine) triblock amphiphilic copolymer nanomicelles for dual-responsive anticancer drug delivery. J Nanosci Nanotechnol 20(11):6959–6967. https://doi.org/10.1166/jnn.2020.18822

Article  CAS  PubMed  Google Scholar 

Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6(12):1543–1575

Article  PubMed  PubMed Central  Google Scholar 

Baltutis V, O’Leary PD, Martin LL (2022) Self-assembly of linear, natural antimicrobial peptides: an evolutionary perspective. ChemPlusChem 87(12):e202200240. https://doi.org/10.1002/cplu.202200240

Article  CAS  PubMed  Google Scholar 

Baylay AJ, Piddock LJV, Webber MA (2019) Molecular mechanisms of antibiotic resistance—Part I. In: Bacterial resistance to antibiotics—from molecules to man, pp 1–26

B-Béres V, Stenger-Kovács C, Buczkó K, Padisák J, Selmeczy GB, Lengyel E et al (2023) Ecosystem services provided by freshwater and marine diatoms. Hydrobiologia 850(12):2707–2733. https://doi.org/10.1007/s10750-022-04984-9

Article  Google Scholar 

Bergmann JN, Killen-Cade RR, Parish LA, Albrecht MT, Wolfe DN (2022) Partnering on vaccines to counter multi-drug resistant threats: workshop proceedings, biomedical advanced research and development authority. Hum Vaccin Immunother 18(5):2058840. https://doi.org/10.1080/21645515.2022.2058840

Article  PubMed  PubMed Central  Google Scholar 

Bevilacqua MP, Huang DJ, Wall BD, Lane SJ, Edwards Iii CK, Hanson JA et al (2017) Amino acid block copolymers with broad antimicrobial activity and barrier properties. Macromol Biosci 17(10):1600492. https://doi.org/10.1002/mabi.201600492

Article  CAS  Google Scholar 

Bharadwaj A, Rastogi A, Pandey S, Gupta S, Sohal JS (2022) Multidrug-resistant bacteria: their mechanism of action and prophylaxis. Biomed Res Int. https://doi.org/10.1155/2022/5419874

Article  PubMed  PubMed Central  Google Scholar 

Bonduelle C (2018) Secondary structures of synthetic polypeptide polymers. Polym Chem 9(13):1517–1529. https://doi.org/10.1039/C7PY01725A

Article  CAS  Google Scholar 

Brisbois EJ, Bayliss J, Wu J, Major TC, Xi C, Wang SC et al (2014) Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model. Acta Biomater 10(10):4136–4142. https://doi.org/10.1016/j.actbio.2014.06.032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 21(9):3233. https://doi.org/10.3390/ijms21093233

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butler Mark S, Gigante V, Sati H, Paulin S, Al-Sulaiman L, Rex John H et al (2022) Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, more action is needed. Antimicrob Agents Chemother 66(3):e01991-e2021. https://doi.org/10.1128/aac.01991-21

Article  PubMed  PubMed Central  Google Scholar 

Casciaro B, d’Angelo I, Zhang X, Loffredo MR, Conte G, Cappiello F et al (2019) Poly(lactide-co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against pseudomonas aeruginosa lung infection: in vitro and in vivo studies. Biomacromol 20(5):1876–1888. https://doi.org/10.1021/acs.biomac.8b01829

Article  CAS  Google Scholar 

Castells M, Thibault B, Delord J-P, Couderc B (2012) Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 13(8):9545–9571. https://doi.org/10.3390/ijms13089545

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R, Rubiño S, Garrido-Barros M, Montalbán-López M et al (2019) Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res 20:129–139. https://doi.org/10.1016/j.jare.2019.06.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakraborti S, Sen A, Bera K, Dutta P, Deb S, Hembram S et al (2021) Significance of cyanobacteria in soil-plant system and for ecological resilience. In: Husen A (ed) Plant performance under environmental stress: hormones, biostimulants and sustainable plant growth management. Springer, Cham, pp 481–491

Chapter  Google Scholar 

Chen S, Shao X, Xiao X, Dai Y, Wang Y, Xie J et al (2020) Host defense peptide mimicking peptide polymer exerting fast, broad spectrum, and potent activities toward clinically isolated multidrug-resistant bacteria. ACS Infect Dis 6(3):479–488. https://doi.org/10.1021/acsinfecdis.9b00410

Article  CAS  PubMed  Google Scholar 

Chen J, Dong Y, Xiao C, Tao Y, Wang X (2021) Organocatalyzed ring-opening polymerization of cyclic lysine derivative: sustainable access to cationic poly(ε-lysine) mimics. Macromolecules 54(5):2226–2231. https://doi.org/10.1021/acs.macromol.0c02689

Article  CAS  Google Scholar 

Chin W, Yang C, Ng VWL, Huang Y, Cheng J, Tong YW et al (2013) Biodegradable broad-spectrum antimicrobial polycarbonates: investigating the role of chemical structure on activity and selectivity. Macromolecules 46(22):8797–8807. https://doi.org/10.1021/ma4019685

Article  CAS 

Comments (0)

No login
gif