Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 27 Sep 2022
Lung Cancer Statistics. How common is lung cancer? https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html. Accessed 26 Sep 2022
Liu Y, Wang H, Li Q, McGettigan MJ, Balagurunathan Y, Garcia AL, Thompson ZJ, Heine JJ, Ye Z, Gillies RJ, Schabath MB (2017) Radiologic features of small pulmonary nodules and lung cancer risk in the national lung screening trial: a nested case-control study. Radiology 286(1):298–306. https://doi.org/10.1148/radiol2017161458
Team TNLSTR, Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duan F, Fagerstrom RM, Gareen IF, Gierada DS, Jones GC, Mahon I, Marcus PM, Sicks JD, Jain A, Baum S (2013) Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med 368(21):1980–1991. https://doi.org/10.1056/NEJMoa1209120
Erasmus JJ, Connolly JE, McAdams HP, Roggli VL (2000) Solitary pulmonary nodules: part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics 20(1):43–58. https://doi.org/10.1148/radiographics.20.1.g00ja0343
Article CAS PubMed Google Scholar
Nataraj V, Rastogi S, Khan SA, Sharma MC, Agarwala S, Vishnubhatla S, Bakhshi S (2016) Prognosticating metastatic osteosarcoma treated with uniform chemotherapy protocol without high dose methotrexate and delayed metastasectomy: a single center experience of 102 patients. Clin Transl Oncol 18:937–944. https://doi.org/10.1007/s12094-015-1467-8
Article CAS PubMed Google Scholar
Biswas B, Rastogi S, Khan SA, Shukla NK, Deo SVS, Agarwala S, Sharma DN, Thulkar S, Vishnubhatla S, Pathania S, Bakhshi S (2014) Hypoalbuminaemia is an independent predictor of poor outcome in metastatic Ewing’s sarcoma family of tumours: a single institutional experience of 150 cases treated with uniform chemotherapy protocol. Clin Oncol 26:722–729. https://doi.org/10.1016/j.clon.2014.05.006
Seo JB, Im JG, Goo JM, Chung MJ, Kim MY (2001) Atypical pulmonary metastases: spectrum of radiologic findings. Radiographics 21(2):403–417. https://doi.org/10.1148/radiographics.21.2.g01mr17403
Article CAS PubMed Google Scholar
Gu Y, Chi J, Liu J, Yang L, Zhang B, Yu D, Zhao Y (2021) A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning. Comput Biol Med 137:104806. https://doi.org/10.1016/j.compbiomed.2021.104806
Halder A, Dey D, Sadhu AK (2020) Lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review. J Digit Imaging 33:655–677. https://doi.org/10.1007/s10278-020-00320-6
Article PubMed PubMed Central Google Scholar
Li R, Xiao C, Huang Y, Hassan H, Huang B (2022) Deep learning applications in computed tomography images for pulmonary nodule detection and diagnosis: a review. Diagnostics 12(2):298. https://doi.org/10.3390/diagnostics12020298
Article PubMed PubMed Central Google Scholar
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Proceedings of 19th international conference medical image computing and computer-assisted intervention—MICCAI 2016. Athens, Greece, October 17–21, 2016, Part II. Springer, Berlin, pp 424–432. https://doi.org/10.1007/978-3-319-46723-8_49
Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D (2022) Image segmentation using deep learning: a survey. IEEE Trans Pattern Anal Mach Intell 44(7):3523–3542. https://doi.org/10.1109/TPAMI.2021.3059968
Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng PA (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 41:40–54. https://doi.org/10.1016/j.media.2017.05.001
Zeng G, Yang X, Li J, Yu L, Heng PA, Zheng G (2017) 3D U-net with multi-level deep supervision: Fully automatic segmentation of proximal femur in 3D MR images. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Springer Verlag, pp 274–282. https://doi.org/10.1007/978-3-319-67389-9_32.
Futrega, M., Milesi, A., Marcinkiewicz, M., Ribalta, P. (2022). Optimized U-net for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_2
Zhao W, Jiang D, Queralta JP, Westerlund T (2020) Multiscale supervised 3D U-net for kidneys and kidney tumor segmentation. Inf Med Unlock 19:100357. https://doi.org/10.1016/j.imu.2020.100357
Ansari MY, Yang Y, Balakrishnan S, Abinahed J, Al-Ansari A, Warfa M, Almokdad O, Barah A, Omer A, Singh AV, Meher PK, Bhadra J, Halabi O, Azampour MF, Navab N, Wendler T, Dakua SP (2022) A lightweight neural network with multiscale feature enhancement for liver CT segmentation. Sci Rep 12:14153. https://doi.org/10.1038/s41598-022-16828-6
Article CAS PubMed PubMed Central Google Scholar
Abraham N, Khan NM (2018) A Novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), Venice, Italy, 2019, pp 683–687, https://doi.org/10.1109/ISBI.2019.8759329.
Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S, Wasserthal J, Koehler G, Norajitra T, Wirkert S, Maier-Hein KH (2018). Abstract: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. Bildverarbeitung für die Medizin. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25326-4_7
Yu H, Li J, Zhang L, Cao Y, Yu X, Sun J (2021) Design of lung nodules segmentation and recognition algorithm based on deep learning. BMC Bioinformatics 22(Suppl 5):314. https://doi.org/10.1186/s12859-021-04234-0
Article PubMed PubMed Central Google Scholar
Yang J, Wu B, Li L, Cao P, Zaiane O (2021) MSDS-UNet: A multiscale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT. Comput Med Imaging Graph 92:101957. https://doi.org/10.1016/j.compmedimag.2021.101957
Xiao Z, Liu B, Geng L, Zhang F, Liu Y (2020) Segmentation of lung nodules using improved 3D-UNet neural network. Symmetry 12(11):1787. https://doi.org/10.3390/sym12111787
Kido S, Kidera S, Hirano Y, Mabu S, Kamiya T, Tanaka N, Suzuki Y, Yanagawa M, Tomiyama N (2022) Segmentation of lung nodules on CT images using a nested three-dimensional fully connected convolutional network. Front Artif Intell 5:782225. https://doi.org/10.3389/frai.2022.782225
Article PubMed PubMed Central Google Scholar
Baidya Kayal E, Ganguly S, Sasi A, Sharma S, Ds D, Saini M, Rangarajan K, Kandasamy D, Bakhshi S, Mehndiratta A (2023) A proposed methodology for detecting the malignant potential of pulmonary nodules in sarcoma using computed tomographic imaging and artificial intelligence-based models. Front Oncol 13:1212526. https://doi.org/10.3389/fonc.2023.1212526
Article CAS PubMed PubMed Central Google Scholar
Setio AAA, Traverso A, de Bel T, Berens MSN, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B, van der Gugten R, Heng PA, Jansen B, de Kaste MMJ, Kotov V, Lin JYH, Manders JTMC, Sóñora-Mengana A, García-Naranjo JC, Papavasileiou E, Prokop M, Saletta M, Schaefer-Prokop CM, Scholten ET, Scholten L, Snoeren MM, Torres EL, Vandemeulebroucke J, Walasek N, Zuidhof GCA, van Ginneken B, Jacobs C (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13. https://doi.org/10.1016/j.media.2017.06.015
Rikhari H, Baidya Kayal E, Ganguly S, Sasi A, Sharma S, Dheeksha DS, Saini M, Rangarajan K, Bakhshi S, Kandasamy D, Mehndiratta A (2023) Fully automatic deep learning-based lung parenchyma segmentation and boundary correction in thoracic CT scans. Int J Comput Assist Radiol Surg 19:261–272. https://doi.org/10.1007/s11548-023-03010-0
Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6:60. https://doi.org/10.1186/s40537-019-0197-0
Taylor L, Nitschke G (2018) Improving deep learning with generic data augmentation. Proc 2018 IEEE Symp Ser Comput Intell SSCI 2018 1542–1547.
Szegedy C, Vanhoucke V, Ioffe S., Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308.
Lee H, Kwon H (2017) Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process 26(10):4843–4855. https://doi.org/10.1109/TIP.2017.2725580
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 31, no. 1. https://doi.org/10.1609/aaai.v31i1.11231
Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: 2017 IEEE international conference on computer vision (ICCV), Venice, Italy, 2017, pp 2999–3007, https://doi.org/10.1109/ICCV.2017.324.
Comments (0)