Copy number amplification-induced overexpression of lncRNA LOC101927668 facilitates colorectal cancer progression by recruiting hnRNPD to disrupt RBM47/p53/p21 signaling

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

Article  PubMed  Google Scholar 

Kocarnik JM, Shiovitz S, Phipps AI. Molecular phenotypes of colorectal cancer and potential clinical applications. Gastroenterol Rep (Oxf). 2015;3(4):269–76.

PubMed  Google Scholar 

Mitchell SF, Parker R. Principles and properties of eukaryotic mRNPs. Mol Cell. 2014;54(4):547–58.

Article  CAS  PubMed  Google Scholar 

Sternburg EL, Karginov FV. Global approaches in studying RNA-binding protein interaction networks. Trends Biochem Sci. 2020;45(7):593–603.

Article  CAS  PubMed  Google Scholar 

Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao Y, Chen C, Shen H, He BZ, Yu D, Jiang S, et al. GenTree, an integrated resource for analyzing the evolution and function of primate-specific coding genes. Genome Res. 2019;29(4):682–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shivalingappa PKM, Sharma V, Shiras A, Bapat SA. RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer. Mol Cell Biochem. 2021;476(12):4493–505.

Article  CAS  PubMed  Google Scholar 

Vanharanta S, Marney CB, Shu W, Valiente M, Zou Y, Mele A, et al. Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer. Elife. 2014;3:3.

Article  Google Scholar 

Sakurai T, Isogaya K, Sakai S, Morikawa M, Morishita Y, Ehata S, et al. RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene. 2016;35(38):5000–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rokavec M, Kaller M, Horst D, Hermeking H. Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci Rep. 2017;7(1):4687.

Article  PubMed  PubMed Central  Google Scholar 

Radine C, Peters D, Reese A, Neuwahl J, Budach W, Janicke RU, et al. The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53–p21-axis. Cell Death Differ. 2020;27(4):1274–85.

Article  CAS  PubMed  Google Scholar 

Wei Y, Zhang F, Zhang Y, Wang X, Xing C, Guo J, et al. Post-transcriptional regulator Rbm47 elevates IL-10 production and promotes the immunosuppression of B cells. Cell Mol Immunol. 2019;16(6):580–9.

Article  CAS  PubMed  Google Scholar 

Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.

Article  CAS  PubMed  Google Scholar 

Badowski C, He B, Garmire LX. Blood-derived lncRNAs as biomarkers for cancer diagnosis: the Good, the Bad and the Beauty. NPJ Precis Oncol. 2022;6(1):40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464(7289):704–12.

Article  CAS  PubMed  Google Scholar 

Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell. 2014;26(3):344–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Wu T, Li F, Dong Q, Wang J, Shang D, et al. Identification and comprehensive characterization of lncRNAs with copy number variations and their driving transcriptional perturbed subpathways reveal functional significance for cancer. Brief Bioinform. 2020;21(6):2153–66.

Article  CAS  PubMed  Google Scholar 

Liu H, Gu X, Wang G, Huang Y, Ju S, Huang J, et al. Copy number variations primed lncRNAs deregulation contribute to poor prognosis in colorectal cancer. Aging (Albany NY). 2019;11(16):6089–108.

Article  CAS  PubMed  Google Scholar 

Tyagi N, Roy S, Vengadesan K, Gupta D. Multi-omics approach for identifying CNV-associated lncRNA signatures with prognostic value in prostate cancer. Noncoding RNA Res. 2024;9(1):66–75.

Article  CAS  PubMed  Google Scholar 

Liu T, Liu Y, Su X, Peng L, Chen J, Xing P, et al. Genome-wide transcriptomics and copy number profiling identify patient-specific CNV-lncRNA-mRNA regulatory triplets in colorectal cancer. Comput Biol Med. 2023;153: 106545.

Article  CAS  PubMed  Google Scholar 

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han H, Wang S, Meng J, Lyu G, Ding G, Hu Y, et al. Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Oncogene. 2020;39(42):6513–28.

Article  CAS  PubMed  Google Scholar 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pheatmap: Pretty Heatmaps. https://cran.r-project.org/web/packages/pheatmap/index.html.

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enrichplot: visualization of functional enrichment result. https://bioconductor.org/packages/release/bioc/html/enrichplot.html.

Hong Y, Downey T, Eu KW, Koh PK, Cheah PY. A “metastasis-prone” signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. Clin Exp Metastasis. 2010;27(2):83–90.

Article  CAS  PubMed  Google Scholar 

Tsukamoto S, Ishikawa T, Iida S, Ishiguro M, Mogushi K, Mizushima H, et al. Clinical significance of osteoprotegerin expression in human colorectal cancer. Clin Cancer Res. 2011;17(8):2444–50.

Article  CAS  PubMed  Google Scholar 

Lin G, He X, Ji H, Shi L, Davis RW, Zhong S. Reproducibility Probability Score–incorporating measurement variability across laboratories for gene selection. Nat Biotechnol. 2006;24(12):1476–7.

Article  CAS  PubMed  Google Scholar 

Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10(5): e1001453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-seque

Comments (0)

No login
gif