Towards the nicotine addiction challenge in the smoking of hookah pipe products, we hereby present the development of an electrochemical sensor for nicotine detection. A nitrogen-doped carbon nanosheet (N-CNS)/poly(amidoamine) dendrimer (PAMAM) nanocomposite-modified electrode was prepared as a sensor for the detection of nicotine in analytical and real samples. The N-CNSs were prepared by hydrothermal method and drop casted on a glassy carbon electrode followed by electro-deposition of PAMAM dendrimer to form the sensor (GCE/N-CNSs/PAMAM). The N-CNSs were characterized with electron microscopy, Raman spectroscopy and FTIR. The sensor was characterized with voltammetry and electrochemical impedance spectroscopy. The N-CNS/PAMAM enhanced the electrochemical performance of the electrode towards the oxidation of nicotine. The sensor achieved a detection limit of 0.05 µM in a linear concentration range of 1.93-61.64 µM nicotine standard samples. The sensor showed good reproducibility, repeatability, and selectivity. The sensor was successful in selectively detecting nicotine in two local brands of hookah pipe tobacco with a 113-121 percent recovery. Nicotine, to a concentration of 0.35-0.39 mg/g, was found in the sampled hookah pipe tobacco products suggesting possible harm to human health.
This article is Open Access
Comments (0)