Simulation Of PEDOT: PSS Solid-State CdS Quantum Dot Solar Cells With TiO2 Ultrathin Film Via SCAPS-1D

A. Ghobadi, M. Yousefi, M. Minbashi, A.H.A. Kordbacheh, A.R.H. Abdolvahab, N.E. Gorji, Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells. Opt. Mater. (2020). https://doi.org/10.1016/j.optmat.2020.109927

Article  Google Scholar 

C. Tamin, D. Chaumont, O. Heintz, A. Leray, M. Adnane, Improvement of hetero-interface engineering by partial substitution of Zn in Cu2ZnSnS4-based solar cells. EPJ Photovoltaics. (2022) https://doi.org/10.1051/epjpv/2022022

Q. Zhang, F. Li, L. Xu, Application of polyoxometalates in third-generation solar cells. Polyoxometalates. (2023). https://doi.org/10.26599/POM.2022.9140018

Article  Google Scholar 

N. Shah, A.A. Shah, P.K. Leung, S. Khan, K. Sun, X. Zhu, Q.A. Liao, Review of Third Generation Solar Cells. Processes (2023). https://doi.org/10.3390/pr11061852

A. Deepak Jha, A. Dixit, P.K. Sushrutha, Patel, Optical simulations and optimization of highly efficient GaAs based quantum dot solar cell. Opt. Commun. (2022). https://doi.org/10.1016/j.optcom.2022.128717

Article  Google Scholar 

S. Kumar, P. Bharti, B. Pradhan, Performance optimization of efficient PbS quantum dots solar cells through numerical simulation. Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-36769-y

Article  Google Scholar 

P. Shilpa, D. Mohan Kumar, P.R. Kishore Kumar, V. Deepthi, A. Sadhu, Sukhdev, Raghava Reddy Kakarla, Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): a review. Mater. Sci. Energy Technol. (2023). https://doi.org/10.1016/j.mset.2023.05.001

Article  Google Scholar 

S. Fateme Mohamadkhani, N. Javadpour, Taghavinia, Improvement of planar perovskite solar cells by using solution processed SnO2/CdS as electron transport layer. Sol. Energy. (2019). https://doi.org/10.1016/j.solener.2019.08.067

Article  Google Scholar 

F. Jahantigh, M.J. Safikhani, The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): a SCAPS-1D simulation study. Appl. Phys. (2019). https://doi.org/10.1007/s00339-019-2582-0

Article  Google Scholar 

N.S. Noorasid, F. Arith, A.Y. Firhat, A.N. Mustafa, A.S.M. Shah, SCAPS Numerical analysis of solid-state dye-sensitized solar cell utilizing copper (I) iodide as Hole Transport Layer, Eng. J.,(2022) https://doi.org/10.4186/ej.2022.26.2.1

A. Asha Chauhan, A.K. Oudhia, O.S. Shrivastav, Tirkey, Performance enhancement of an all-inorganic perovskite solar cell by using SCAPS and DFT extracted parameters of CuX (X = I, cl, br). Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2023.128327

Article  Google Scholar 

K.S. Nithya, K.S. Sudheer, Optik, (2020) Paper title https://doi.org/10.1016/j.ijleo.2020.164790

M. Baro, P. Borgohain, SCAPS-1D device Simulation of highly efficient Perovskite Solar cells using Diverse Charge Transport Layers. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10681-7

Article  Google Scholar 

V. Srivastava, R.K. Chauhan, P. Lohia, Investigating the performance of lead-free Perovskite Solar cells using various Hole Transport Material by Numerical Simulation. Trans. Electr. Electron. Mater. (2023). https://doi.org/10.1007/s42341-022-00412-w

Article  Google Scholar 

I. Ahmad, K. Hayat, M. Ashraf et al., SCAPS-based simulation analysis of device parameters of ZnO-inverted polymer solar cells. Opt. Quant. Electron. (2023). https://doi.org/10.1007/s11082-023-04579-1

Article  Google Scholar 

P. Kai Tan, G. Lin, Y. Wang, Z. Liu, Y. Xu, Lin, Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid State Electron. (2016). https://doi.org/10.1016/j.sse.2016.09.012

Article  Google Scholar 

H. Sharma, V.K. Verma, R.C. Singh et al., Numerical Analysis of High-Efficiency CH3NH3PbI3 Perovskite Solar Cell with PEDOT:PSS Hole Transport Material using SCAPS 1D Simulator. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10257-5

Article  Google Scholar 

P. Kumari, U. Punia, D. Sharma, Silicon et al., (2023). https://doi.org/10.1007/s12633-022-02163-y

V. Tanvi, A. Saxena, O. Singh, A. Prakash, A.K. Mahajan, K.P. Debnath, S.C. Muthe, Gadkari, Improved performance of dye sensitized solar cell via fine tuning of ultra-thin compact TiO2 layer. Sol. Energy Mater. Sol. Cells. (2017). https://doi.org/10.1016/j.solmat.2017.05.013

Article  Google Scholar 

N.S. Noorasid, F. Arith, A.N.M. Mustafa, S.H.M. Suhaimy, A.S. Mohd Shah, M.A. Mohd Abid, Numerical Analysis of Ultrathin TiO2 Photoanode Layer of Dye Sensitized Solar Cell by Using SCAPS-1D, 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Kuala Lumpur, Malaysia, (2021) https://doi.org/10.1109/RSM52397.2021.9511600

R. Jaiswal, R. Ranjan, N. Srivastava et al., Numerical study of eco-friendly Sn-based Perovskite solar cell with 25.48% efficiency using SCAPS-1D. J. Mater. Sci: Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10171-w

Article  Google Scholar 

T. Ouslimane et al., Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon (2021). https://doi.org/10.1016/j.heliyon.2021.e06379

M.I. Ahamed, M. Ahamed, R. Muthaiyan, Modelling of density of states and energy level of chalcogenide quantum dots. Int. Rev. Appl. Sci. Eng. (2021). https://doi.org/10.1556/1848.2021.00288

Article  Google Scholar 

V.G. Litovchenko, A.A. Grygoriev, Determination of the electron Affinity (work Function) of Semiconductor Nanocrystals (UKRAINS’KYI FIZYCHNYI ZHURNAL, 2007)

S. Kumar, P. Bharti, B. Pradhan, Performance optimization of efficient PbS quantum dots solar cells through numerical simulation. Sci. Rep. 13, 10511 (2023). https://doi.org/10.1038/s41598-023-36769-y

Article  ADS  Google Scholar 

V. Ravi, F. Ingle, Shoyebmohamad, J. Shaikh, M. Kaur, B. Ubaidullah, H.M. Pandit, Pathan, Optical and electronic properties of colloidal Cadmium Sulfide. Mater. Sci. Engineering: B (2023). https://doi.org/10.1016/j.mseb.2023.116487

Article  Google Scholar 

S. Dabbabi, T. Ben Nasr, & Turki Kamoun, N. CIGS Solar Cells for Space Applications: Numerical Simulation of the Effect of Traps Created by High-Energy Electron and Proton Irradiation on the Performance of Solar Cells. JOM. (2019). https://doi.org/10.1007/s11837-018-2748-9

A. Sunny, S.R.A. Ahmed, Numerical Simulation and performance evaluation of highly efficient Sb2Se3 solar cell with tin sulfide as Hole Transport Layer. Phys. Status Solidi B (2021). https://doi.org/10.1002/pssb.202000630

Article  Google Scholar 

A. Hossein Alipour, Ghadimi, Optimization of lead-free perovskite solar cells in normal-structure with WO3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111432

Article  Google Scholar 

A.-N. Cho, Nam‐Gyu, Park, Impact of interfacial layers in perovskite solar cells. ChemSusChem (2017) https://doi.org/10.1002/cssc.201701095

R. Jeyakumar, A. Bag, R. Nekovei et al., Influence of Electron Transport Layer (TiO2) thickness and its Doping density on the performance of CH3NH3PbI3-Based Planar Perovskite Solar cells. J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08041-w

Article  Google Scholar 

S.R.A. Adnan Hosen, Ahmed, Performance analysis of SnS solar cell with a hole transport layer based on experimentally extracted device parameters. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.164823

Article  Google Scholar 

H. Chen, Z.-Q. Li, B. Sun, X.-D. Feng, Towards high-efficiency planar heterojunction antimony sulfide solar cells. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111556

Article  Google Scholar 

M.N.H. Riyad, A. Sunny, M.M. Khatun, S. Rahman, S.R.A. Ahmed, Performance evaluation of WS2 as buffer and Sb2S3 as hole transport layer in CZTS solar cell by numerical simulation. Eng. Rep. (2023). https://doi.org/10.1002/eng2.12600

Article  Google Scholar 

S.R.A. Ahmed, M. Rahaman, A. Sunny, S. Rahman, M.S. Islam, T.A.E.-M. Taha, Z.A. Alrowaili, Md. Suruz Mian, enhancing the efficiency of Cu2Te thin-film solar cell with WS2 buffer layer: a simulation study. Opt. Laser Technol. (2023). https://doi.org/10.1016/j.optlastec.2022.108942

Article  Google Scholar 

L.-. Ling-yan Lin, Y. Jiang, Bao-Dian Fan, Analysis of Sb2Se3/CdS based photovoltaic cell: a numerical simulation approach. J. Phys. Chem. Solids. (2018). https://doi.org/10.1016/j.jpcs.2018.05.045

Article  Google Scholar 

Z.-Q. Li, M. Ni, F. Xiao-Dong, Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab5fa7

Article  Google Scholar 

X. Yu Cao, H. Zhu, X. Chen, Z. Zhang, Jing, Jinbo Pang, towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells. (2019). https://doi.org/10.1016/j.solmat.2019.109945

Article  Google Scholar 

S.R.A. Ahmed, A. Sunny, S. Rahman, Performance enhancement of Sb2Se3 solar cell using a back surface field layer: a numerical simulation approach. Sol. Energy Mater. Sol. Cells. (2021). https://doi.org/10.1016/j.solmat.2020.110919

Article  Google Scholar 

P. Kumar, D. Kukkar, A. Deep, S.C. Sharma, L.M. Bharadwaj, Synthesis of mercaptopropionic acid stabilized CDS quantum dots for bioimaging in breast cancer. Adv. Mater. Lett. (2012). https://doi.org/10.5185/amlett.2012.icnano.296

Article  Google Scholar 

A. Chaves, J.G. Azadani, H. Alsalman et al., Bandgap engineering of two-dimensional semiconductor materials. Npj 2D mater appl (2020). https://doi.org/10.1038/s41699-020-00162-4

W. Henni, W.L. Rahal, D. Rached, Path toward high-efficiency CZTS Solar cells with buffer layer optimization. Acta Physica Polonica, A. (2022). https://doi.org/10.12693/APhysPolA.142.445

A. Cheriet, M. Mebarki, P. Christol, Hocine Aït-kaci, Role of metallic contacts and defects on performances of an antimonide based thermo-photovoltaic cell: a numerical analysis. Sol. Energy. (2022). https://doi.org/10.1016/j.solener.2022.06.040

Article  Google Scholar 

P.K. Patel, Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-82817-w

Article  Google Scholar 

W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC, 2016). https://doi.org/10.1201/9781315380476

S.H. Im, H.-J. Kim, S. Kim, S.-W. Kim, S.I. Seok, Improved air stability of PbS-sensitized solar cell by incorporating ethanedithiol during spin-assisted successive ionic layer adsorption and reaction, Organic Electronics,2012, https://doi.org/10.1016/j.orgel.2012.06.040

M.H. Zafar Ali, A. Sayyad, Ali, A comparative analysis of solid-state quantum dot-sensitized solar cells employing various hole transport layers, metal contacts, and a sensitizer comprising PbS/CdS/ZnS quantum dots. Mater. Sci. Engineering: B 2024, https://doi.org/10.1016/j.mseb.2024.117391

Amr, Hessein, Ahmed Abd El-Moneim, Hybrid CuS-PEOT:PSS counter electrode for quantum sensitized solar cell,Optik, 2019, https://doi.org/10.1016/j.ijleo.2019.162974

K. Dhandapani, N. Dhanya, K. Sudh

Comments (0)

No login
gif