A. Ghobadi, M. Yousefi, M. Minbashi, A.H.A. Kordbacheh, A.R.H. Abdolvahab, N.E. Gorji, Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells. Opt. Mater. (2020). https://doi.org/10.1016/j.optmat.2020.109927
C. Tamin, D. Chaumont, O. Heintz, A. Leray, M. Adnane, Improvement of hetero-interface engineering by partial substitution of Zn in Cu2ZnSnS4-based solar cells. EPJ Photovoltaics. (2022) https://doi.org/10.1051/epjpv/2022022
Q. Zhang, F. Li, L. Xu, Application of polyoxometalates in third-generation solar cells. Polyoxometalates. (2023). https://doi.org/10.26599/POM.2022.9140018
N. Shah, A.A. Shah, P.K. Leung, S. Khan, K. Sun, X. Zhu, Q.A. Liao, Review of Third Generation Solar Cells. Processes (2023). https://doi.org/10.3390/pr11061852
A. Deepak Jha, A. Dixit, P.K. Sushrutha, Patel, Optical simulations and optimization of highly efficient GaAs based quantum dot solar cell. Opt. Commun. (2022). https://doi.org/10.1016/j.optcom.2022.128717
S. Kumar, P. Bharti, B. Pradhan, Performance optimization of efficient PbS quantum dots solar cells through numerical simulation. Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-36769-y
P. Shilpa, D. Mohan Kumar, P.R. Kishore Kumar, V. Deepthi, A. Sadhu, Sukhdev, Raghava Reddy Kakarla, Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): a review. Mater. Sci. Energy Technol. (2023). https://doi.org/10.1016/j.mset.2023.05.001
S. Fateme Mohamadkhani, N. Javadpour, Taghavinia, Improvement of planar perovskite solar cells by using solution processed SnO2/CdS as electron transport layer. Sol. Energy. (2019). https://doi.org/10.1016/j.solener.2019.08.067
F. Jahantigh, M.J. Safikhani, The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): a SCAPS-1D simulation study. Appl. Phys. (2019). https://doi.org/10.1007/s00339-019-2582-0
N.S. Noorasid, F. Arith, A.Y. Firhat, A.N. Mustafa, A.S.M. Shah, SCAPS Numerical analysis of solid-state dye-sensitized solar cell utilizing copper (I) iodide as Hole Transport Layer, Eng. J.,(2022) https://doi.org/10.4186/ej.2022.26.2.1
A. Asha Chauhan, A.K. Oudhia, O.S. Shrivastav, Tirkey, Performance enhancement of an all-inorganic perovskite solar cell by using SCAPS and DFT extracted parameters of CuX (X = I, cl, br). Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2023.128327
K.S. Nithya, K.S. Sudheer, Optik, (2020) Paper title https://doi.org/10.1016/j.ijleo.2020.164790
M. Baro, P. Borgohain, SCAPS-1D device Simulation of highly efficient Perovskite Solar cells using Diverse Charge Transport Layers. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10681-7
V. Srivastava, R.K. Chauhan, P. Lohia, Investigating the performance of lead-free Perovskite Solar cells using various Hole Transport Material by Numerical Simulation. Trans. Electr. Electron. Mater. (2023). https://doi.org/10.1007/s42341-022-00412-w
I. Ahmad, K. Hayat, M. Ashraf et al., SCAPS-based simulation analysis of device parameters of ZnO-inverted polymer solar cells. Opt. Quant. Electron. (2023). https://doi.org/10.1007/s11082-023-04579-1
P. Kai Tan, G. Lin, Y. Wang, Z. Liu, Y. Xu, Lin, Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid State Electron. (2016). https://doi.org/10.1016/j.sse.2016.09.012
H. Sharma, V.K. Verma, R.C. Singh et al., Numerical Analysis of High-Efficiency CH3NH3PbI3 Perovskite Solar Cell with PEDOT:PSS Hole Transport Material using SCAPS 1D Simulator. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10257-5
P. Kumari, U. Punia, D. Sharma, Silicon et al., (2023). https://doi.org/10.1007/s12633-022-02163-y
V. Tanvi, A. Saxena, O. Singh, A. Prakash, A.K. Mahajan, K.P. Debnath, S.C. Muthe, Gadkari, Improved performance of dye sensitized solar cell via fine tuning of ultra-thin compact TiO2 layer. Sol. Energy Mater. Sol. Cells. (2017). https://doi.org/10.1016/j.solmat.2017.05.013
N.S. Noorasid, F. Arith, A.N.M. Mustafa, S.H.M. Suhaimy, A.S. Mohd Shah, M.A. Mohd Abid, Numerical Analysis of Ultrathin TiO2 Photoanode Layer of Dye Sensitized Solar Cell by Using SCAPS-1D, 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Kuala Lumpur, Malaysia, (2021) https://doi.org/10.1109/RSM52397.2021.9511600
R. Jaiswal, R. Ranjan, N. Srivastava et al., Numerical study of eco-friendly Sn-based Perovskite solar cell with 25.48% efficiency using SCAPS-1D. J. Mater. Sci: Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10171-w
T. Ouslimane et al., Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon (2021). https://doi.org/10.1016/j.heliyon.2021.e06379
M.I. Ahamed, M. Ahamed, R. Muthaiyan, Modelling of density of states and energy level of chalcogenide quantum dots. Int. Rev. Appl. Sci. Eng. (2021). https://doi.org/10.1556/1848.2021.00288
V.G. Litovchenko, A.A. Grygoriev, Determination of the electron Affinity (work Function) of Semiconductor Nanocrystals (UKRAINS’KYI FIZYCHNYI ZHURNAL, 2007)
S. Kumar, P. Bharti, B. Pradhan, Performance optimization of efficient PbS quantum dots solar cells through numerical simulation. Sci. Rep. 13, 10511 (2023). https://doi.org/10.1038/s41598-023-36769-y
V. Ravi, F. Ingle, Shoyebmohamad, J. Shaikh, M. Kaur, B. Ubaidullah, H.M. Pandit, Pathan, Optical and electronic properties of colloidal Cadmium Sulfide. Mater. Sci. Engineering: B (2023). https://doi.org/10.1016/j.mseb.2023.116487
S. Dabbabi, T. Ben Nasr, & Turki Kamoun, N. CIGS Solar Cells for Space Applications: Numerical Simulation of the Effect of Traps Created by High-Energy Electron and Proton Irradiation on the Performance of Solar Cells. JOM. (2019). https://doi.org/10.1007/s11837-018-2748-9
A. Sunny, S.R.A. Ahmed, Numerical Simulation and performance evaluation of highly efficient Sb2Se3 solar cell with tin sulfide as Hole Transport Layer. Phys. Status Solidi B (2021). https://doi.org/10.1002/pssb.202000630
A. Hossein Alipour, Ghadimi, Optimization of lead-free perovskite solar cells in normal-structure with WO3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111432
A.-N. Cho, Nam‐Gyu, Park, Impact of interfacial layers in perovskite solar cells. ChemSusChem (2017) https://doi.org/10.1002/cssc.201701095
R. Jeyakumar, A. Bag, R. Nekovei et al., Influence of Electron Transport Layer (TiO2) thickness and its Doping density on the performance of CH3NH3PbI3-Based Planar Perovskite Solar cells. J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08041-w
S.R.A. Adnan Hosen, Ahmed, Performance analysis of SnS solar cell with a hole transport layer based on experimentally extracted device parameters. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.164823
H. Chen, Z.-Q. Li, B. Sun, X.-D. Feng, Towards high-efficiency planar heterojunction antimony sulfide solar cells. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111556
M.N.H. Riyad, A. Sunny, M.M. Khatun, S. Rahman, S.R.A. Ahmed, Performance evaluation of WS2 as buffer and Sb2S3 as hole transport layer in CZTS solar cell by numerical simulation. Eng. Rep. (2023). https://doi.org/10.1002/eng2.12600
S.R.A. Ahmed, M. Rahaman, A. Sunny, S. Rahman, M.S. Islam, T.A.E.-M. Taha, Z.A. Alrowaili, Md. Suruz Mian, enhancing the efficiency of Cu2Te thin-film solar cell with WS2 buffer layer: a simulation study. Opt. Laser Technol. (2023). https://doi.org/10.1016/j.optlastec.2022.108942
L.-. Ling-yan Lin, Y. Jiang, Bao-Dian Fan, Analysis of Sb2Se3/CdS based photovoltaic cell: a numerical simulation approach. J. Phys. Chem. Solids. (2018). https://doi.org/10.1016/j.jpcs.2018.05.045
Z.-Q. Li, M. Ni, F. Xiao-Dong, Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab5fa7
X. Yu Cao, H. Zhu, X. Chen, Z. Zhang, Jing, Jinbo Pang, towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells. (2019). https://doi.org/10.1016/j.solmat.2019.109945
S.R.A. Ahmed, A. Sunny, S. Rahman, Performance enhancement of Sb2Se3 solar cell using a back surface field layer: a numerical simulation approach. Sol. Energy Mater. Sol. Cells. (2021). https://doi.org/10.1016/j.solmat.2020.110919
P. Kumar, D. Kukkar, A. Deep, S.C. Sharma, L.M. Bharadwaj, Synthesis of mercaptopropionic acid stabilized CDS quantum dots for bioimaging in breast cancer. Adv. Mater. Lett. (2012). https://doi.org/10.5185/amlett.2012.icnano.296
A. Chaves, J.G. Azadani, H. Alsalman et al., Bandgap engineering of two-dimensional semiconductor materials. Npj 2D mater appl (2020). https://doi.org/10.1038/s41699-020-00162-4
W. Henni, W.L. Rahal, D. Rached, Path toward high-efficiency CZTS Solar cells with buffer layer optimization. Acta Physica Polonica, A. (2022). https://doi.org/10.12693/APhysPolA.142.445
A. Cheriet, M. Mebarki, P. Christol, Hocine Aït-kaci, Role of metallic contacts and defects on performances of an antimonide based thermo-photovoltaic cell: a numerical analysis. Sol. Energy. (2022). https://doi.org/10.1016/j.solener.2022.06.040
P.K. Patel, Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-82817-w
W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC, 2016). https://doi.org/10.1201/9781315380476
S.H. Im, H.-J. Kim, S. Kim, S.-W. Kim, S.I. Seok, Improved air stability of PbS-sensitized solar cell by incorporating ethanedithiol during spin-assisted successive ionic layer adsorption and reaction, Organic Electronics,2012, https://doi.org/10.1016/j.orgel.2012.06.040
M.H. Zafar Ali, A. Sayyad, Ali, A comparative analysis of solid-state quantum dot-sensitized solar cells employing various hole transport layers, metal contacts, and a sensitizer comprising PbS/CdS/ZnS quantum dots. Mater. Sci. Engineering: B 2024, https://doi.org/10.1016/j.mseb.2024.117391
Amr, Hessein, Ahmed Abd El-Moneim, Hybrid CuS-PEOT:PSS counter electrode for quantum sensitized solar cell,Optik, 2019, https://doi.org/10.1016/j.ijleo.2019.162974
K. Dhandapani, N. Dhanya, K. Sudh
Comments (0)