A scoring model for the expression of genes related to programmed cell death predicts immunotherapy response and prognosis in lung adenocarcinoma

Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;20:624–39.

Article  PubMed  Google Scholar 

Huang J, Deng Y, Tin MS, Lok V, Ngai CH, Zhang L, Lucero-Prisno DE III, Xu W, Zheng Z-J, Elcarte E. Distribution, risk factors, and temporal trends for lung cancer incidence and mortality: a global analysis. Chest. 2022;161:1101–11.

Article  PubMed  Google Scholar 

Seguin L, Durandy M, Feral CC. Lung adenocarcinoma tumor origin: a guide for personalized medicine. Cancers. 2022;14:1759.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021;22:8661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Li X, Yang M, Liu S-B. Research progress on morphology and mechanism of programmed cell death. Cell Death Dis. 2024;15:327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21:678–95.

Article  CAS  PubMed  Google Scholar 

Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021;28:2029–44.

Article  PubMed  PubMed Central  Google Scholar 

Koren E, Fuchs Y. Modes of regulated cell death in cancer. Cancer Discov. 2021;11:245–65.

Article  CAS  PubMed  Google Scholar 

Zou Y, Xie J, Zheng S, Liu W, Tang Y, Tian W, Deng X, Wu L, Zhang Y, Wong CW, Tan D, Liu Q, Xie X. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg. 2022;107: 106936.

Article  PubMed  Google Scholar 

Chen M, Qi Y, Zhang S, Du Y, Cheng H, Gao S. Molecular insights into programmed cell death in esophageal squamous cell carcinoma. PeerJ. 2024;12: e17690.

Article  PubMed  PubMed Central  Google Scholar 

Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417.

Article  PubMed  PubMed Central  Google Scholar 

Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC. Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci. 2017;18:367.

Article  PubMed  PubMed Central  Google Scholar 

Chen K, Zhang S, Jiao J, Zhao S. Ferroptosis and its potential role in lung cancer: updated evidence from pathogenesis to therapy. J Inflamm Res. 2021;14:7079–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizumura K, Maruoka S, Gon Y, Choi AM, Hashimoto S. The role of necroptosis in pulmonary diseases. Respir Investig. 2016;54:407–12.

Article  PubMed  Google Scholar 

Ketelut-Carneiro N, Fitzgerald KA. Apoptosis, pyroptosis, and necroptosis—Oh my! The many ways a cell can die. J Mol Biol. 2022;434: 167378.

Article  CAS  PubMed  Google Scholar 

Duan J, Cui L, Zhao X, Bai H, Cai S, Wang G, Zhao Z, Zhao J, Chen S, Song J. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 inhibitors in patients with cancer: a systematic review and meta-analysis. JAMA Oncol. 2020;6:375–84.

Article  PubMed  Google Scholar 

Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7:286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

Article  CAS  PubMed  Google Scholar 

Love M, Anders S, Huber W. Differential analysis of count data–the DESeq2 package. Genome Biol. 2014;15:10–1186.

Google Scholar 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.

Article  PubMed  PubMed Central  Google Scholar 

Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.

Article  Google Scholar 

Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011;12:1–7.

Article  CAS  Google Scholar 

Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012;16:284–7.

Article  CAS  Google Scholar 

Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set enrichment analysis. bioRxiv 2016; 060012.

Csardi MG. Package ‘igraph’. Last accessed 2013; 3: 2013

Si B, Liang Y, Zhao J, Zhang Y, Liao X, Jin H, Liu H, Gu L. GGraph: an efficient structure-aware approach for iterative graph processing. IEEE Trans Big Data. 2020;8:1182–94.

Article  Google Scholar 

Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:1–15.

Article  Google Scholar 

Therneau TM, Lumley T. Package ‘survival.’ R Top Doc. 2015;128:28–33.

Google Scholar 

Harrell Jr FE, Harrell Jr MFE, Hmisc D. Package ‘rms’. Vanderbilt University 2017; 229.

Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, Zhou R, Qiu W, Huang N, Sun L. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12: 687975.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu Z. Complex heatmap visualization. Imeta. 2022;1: e43.

Article  PubMed  PubMed Central  Google Scholar 

Delignette-Muller ML, Dutang C. fitdistrplus: an R package for fitting distributions. J Stat Softw. 2015;64:1–34.

Article  Google Scholar 

Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95.

Article  CAS  PubMed  Google Scholar 

Racle J, Gfeller D. EPIC: a tool to estimate the proportions of different cell types from bulk gene expression data. In: Bioinformatics for cancer immunotherapy: methods and protocols 2020, p. 233–48.

Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. 2021;22:bbad260.

Article  Google Scholar 

Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE. 2014;9: e107468.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif