World Health Organization: WHO [Internet]. 2023 [cited 2023 Aug 28]. Hepatitis C. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c
Manns MP, Maasoumy B, Rice CM. Breakthroughs in hepatitis C research: from discovery to cure. Nat Rev Gastroenterol Hepatol. 2022;19:533–50.
Article PubMed PubMed Central Google Scholar
Frank C, Mohamed MK, Strickland GT, Lavanchy D, Arthur RR, Magder LS, et al. The role of parenteral antischistosomal therapy in the spread of hepatitis C virus in Egypt. Lancet. 2000;355(9207):887–91.
Article CAS PubMed Google Scholar
Esmat G, El-Sayed MH, Hassany M, Doss W, Waked I. One step closer to elimination of hepatitis C in Egypt. Vol. 3, The Lancet Gastroenterology and Hepatology. Elsevier Ltd; 2018. p. 665.
Hajarizadeh B, Grebely J, Dore GJ. Epidemiology and natural history of HCV infection. Nat Rev Gastroenterol Hepatol. 2013;10(9):553–62.
Article CAS PubMed Google Scholar
Borgia SM, Hedskog C, Parhy B, Hyland RH, Stamm LM, Brainard DM, et al. Identification of a novel hepatitis C virus genotype from Punjab, India: expanding classification of hepatitis C virus into 8 genotypes. J Infect Dis. 2018;218(11):1722–9.
Wantuck JM, Ahmed A, Nguyen MH. Review article: The epidemiology and therapy of chronic hepatitis C genotypes 4, 5 and 6. Aliment Pharmacol Ther. 2014;39(2):137–47.
Article CAS PubMed Google Scholar
Abdel-Samiee M, Youssef MI, Elghamry F, Bazeed M, Al-Shorbagy M, Shalaby H, et al. A multicentric and nationwide predictive study role of T cell sub-population in the prevalence and prognosis of cryoglobulinemia among genotype 4 chronic hepatitis C patients. J Med Virol. 2023;95(12):e29248.
Article CAS PubMed Google Scholar
Götte M, Feld JJ. Direct-acting antiviral agents for hepatitis C: structural and mechanistic insights. Nat Rev Gastroenterol Hepatol. 2016;13(6):338–51. https://doi.org/10.1038/nrgastro.2016.60.
Article CAS PubMed Google Scholar
Abozeid M, Alsebaey A, Abdelsameea E, Othman W, Elhelbawy M, Rgab A, et al. High efficacy of generic and brand direct acting antivirals in treatment of chronic hepatitis C. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2018;75:109–14.
Liver EA for the S of the. EASL recommendations on treatment of hepatitis C: Final update of the series(☆). Vol. 73, Journal of hepatology. Netherlands; 2020. p. 1170–218.
Hoofnagle JH, Sherker AH. Therapy for hepatitis C — The costs of success. N Engl J Med. 2014;370(16):1552–3.
Article CAS PubMed Google Scholar
Essa M, Sabry A, Abdelsameea E, Tharwa ES, Salama M. Impact of new direct-acting antiviral drugs on hepatitis C virus-related decompensated liver cirrhosis. Eur J Gastroenterol Hepatol. 2019;31(1):53–8.
Article CAS PubMed Google Scholar
Schwander B, Feldstein J, Sulo S, Gonzalez L. Pursuing elimination of hepatitis C in Egypt : cost- effectiveness and economic evaluation of a country- wide program. Infect Dis Ther. 2022;11(3):1193–203. https://doi.org/10.1007/s40121-022-00631-x.
Article PubMed PubMed Central Google Scholar
Nahon P, Cobat A. Human genetics of HCV infection phenotypes in the era of direct-acting antivirals. Hum Genet. 2020;139(6–7):855–63. https://doi.org/10.1007/s00439-020-02136-4.
Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat Genet. 2009;41(10):1100–4.
Article CAS PubMed Google Scholar
Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401.
Article CAS PubMed Google Scholar
America N, Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, et al. Genome-wide association of IL28B with response to pegylated interferon- α and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41(10):1105–9.
Khan AJ, Saraswat VA, Ranjan P, Parmar D, Negi TS, Mohindra S. Polymorphism in interferon λ3/interleukin-28B gene and risk to noncirrhotic chronic hepatitis C genotype 3 virus infection and its effect on the response to combined daclatasvir and sofosbuvir therapy. J Med Virol. 2019;91(4):659–67. https://doi.org/10.1002/jmv.25359.
Article CAS PubMed Google Scholar
El-Garawani I, Hassab El-Nabi S, Gadallah M, Abdelsameea E. Association between IFN-λ 3 gene polymorphisms and outcome of treatment with direct acting antivirals in chronic HCV-infected Egyptian psatients. Immunol Invest. 2020;50(1):1–11. https://doi.org/10.1080/08820139.2020.1722158.
Ghanem SE, Elsabaawy M, shebl N, Abdelsameea E, Othman W, EL-Bassal FI, et al. Value of IFNL3 genetic polymorphism in the prediction of HCV treatment response to direct-acting antiviral drugs versus interferon therapy. Expert Rev Anti Infect Ther. 2020;18(9):947–54.
Article CAS PubMed Google Scholar
Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77.
Article CAS PubMed Google Scholar
Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4:63–8.
Article CAS PubMed Google Scholar
Wack A, Terczyn E, Hartmann R. Guarding the frontiers : the biology of type III interferons. Nat Immunol. 2015;16(8):802–9.
Article CAS PubMed PubMed Central Google Scholar
Al-Qahtani A, Al-Anazi M, Abdo AA, Sanai FM, Al-Hamoudi W, Alswat KA, et al. Correlation between genetic variations and serum level of interleukin 28B with virus genotypes and disease progression in chronic hepatitis C virus infection. J Immunol Res. 2015;2015:768470.
Article PubMed PubMed Central Google Scholar
Moghimi M, Tavakoli F, Doosti M, Ahmadi-Vasmehjani A, Akhondi-Meybodi M. Correlation between interleukin-28 gene polymorphism with interleukin-28 cytokine levels and viral genotypes among HCV patients in Yazd. Iran BMC Res Notes. 2019;12(1):10–4. https://doi.org/10.1186/s13104-019-4651-z.
Oda JMM, Hirata BKB, Guembarovski RL, Watanabe MAE. Genetic polymorphism in FOXP3 gene: Imbalance in regulatory T-cell role and development of human diseases. J Genet. 2013;92(1):163–71.
Article CAS PubMed Google Scholar
Wu KJ, Qian QF, Zhou JR, Sun DL, Duan YF, Zhu X, Lu YJ. Regulatory T cells (Tregs) in liver fibrosis. Cell death discovery. 2023;9(1):53.
Article CAS PubMed PubMed Central Google Scholar
Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005;6:353–60.
Article CAS PubMed Google Scholar
Zhao H, Liao X, Kang Y. Tregs: Where we are and what comes next? Front Immunol. 2017;8:1578.
Article PubMed PubMed Central Google Scholar
Hoogendoorn B, Coleman SL, Guy CA, Smith K, Bowen T, Buckland PR, et al. Functional analysis of human promoter polymorphisms. Hum Mol Genet. 2003;12(18):2249–54.
Article CAS PubMed Google Scholar
Kao HH, Yu RL, Chuang WL, Huang JF, Dai CY, Tan CH. Genetic polymorphisms of regulatory T cell-related genes modulate systemic inflammation induced by viral hepatitis. Kaohsiung J Med Sci. 2021;37(11):1000–9.
Article CAS PubMed Google Scholar
Pereira LMS, da Amoras E, SG, Conde SRS d. S, Demachki S, Monteiro JC, Martins-Feitosa RN, et al. The -3279C > A and -924A > G polymorphisms in the FOXP3 gene are associated with viral load and liver enzyme levels in patients with chronic viral liver diseases. Front Immunol. 2018;9:1–16.
Comments (0)