Knockenhauer, K. E. & Schwartz, T. U. The nuclear pore complex as a flexible and dynamic gate. Cell 164, 1162–1171 (2016).
Article CAS PubMed PubMed Central Google Scholar
Beck, M. & Hurt, E. The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18, 73–89 (2016).
Coyne, A. N. & Rothstein, J. D. Nuclear pore complexes—a doorway to neural injury in neurodegeneration. Nat. Rev. Neurol. 18, 348–362 (2022).
Article CAS PubMed PubMed Central Google Scholar
Cho, U. H. & Hetzer, M. W. Nuclear periphery takes center stage: the role of nuclear pore complexes in cell identity and aging. Neuron 106, 899–911 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).
Article CAS PubMed Google Scholar
Cohen, S. & Greenberg, M. E. Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev. Cell Dev. Biol. 24, 183–209 (2008).
Article CAS PubMed PubMed Central Google Scholar
Karpova, A. et al. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell 152, 1119–1133 (2013).
Article CAS PubMed Google Scholar
Kaushik, R., Grochowska, K. M., Butnaru, I. & Kreutz, M. R. Protein trafficking from synapse to nucleus in control of activity-dependent gene expression. Neuroscience 280, 340–350 (2014).
Article CAS PubMed Google Scholar
Sutton, M. A. & Schuman, E. M. Local translational control in dendrites and its role in long-term synaptic plasticity. J. Neurobiol. 64, 116–131 (2005).
Article CAS PubMed Google Scholar
Sutton, M. A. & Schuman, E. M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58 (2006).
Article CAS PubMed Google Scholar
Jung, H., Gkogkas, C. G., Sonenberg, N. & Holt, C. E. Remote control of gene function by local translation. Cell 157, 26–40 (2014).
Article CAS PubMed PubMed Central Google Scholar
Batista, A. F. R. & Hengst, U. Intra-axonal protein synthesis in development and beyond. Int. J. Dev. Neurosci. 55, 140–149 (2016).
Article CAS PubMed PubMed Central Google Scholar
Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).
Article CAS PubMed Google Scholar
Grima, J. C. et al. Mutant Huntingtin disrupts the nuclear pore complex. Neuron https://doi.org/10.1016/j.neuron.2017.03.023 (2017).
Pappas, S. S., Liang, C. C., Kim, S., Rivera, C. A. O. & Dauer, W. T. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum. Mol. Genet. 27, 407–420 (2018).
Article CAS PubMed Google Scholar
Eftekharzadeh, B. et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron https://doi.org/10.1016/j.neuron.2018.07.039 (2018).
Coyne, A. N. et al. G4C2 repeat RNA initiates a POM121-mediated reduction in specific nucleoporins in C9orf72 ALS/FTD. Neuron 107, 1124–1140.e11 (2020).
Article CAS PubMed PubMed Central Google Scholar
Lin, Y.-C. et al. Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nat. Neurosci. 24, 1077–1088 (2021).
Article CAS PubMed PubMed Central Google Scholar
Basel-Vanagaite, L. et al. Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann. Neurol. 60, 214–222 (2006).
Article CAS PubMed Google Scholar
Harrer, P. et al. Recessive NUP54 variants underlie early-onset dystonia with striatal lesions. Ann. Neurol. 93, 330–335 (2023).
Article CAS PubMed Google Scholar
Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R. & Hetzer, M. W. Extremely long-lived nuclear pore proteins in the rat brain. Science 335, 942 (2012).
Article CAS PubMed PubMed Central Google Scholar
Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).
Article CAS PubMed PubMed Central Google Scholar
Ozelius, L. J. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17, 40–48 (1997).
Article CAS PubMed Google Scholar
Kustedjo, K., Bracey, M. H. & Cravatt, B. F. Torsin A and its torsion dystonia-associated mutant forms are lumenal glycoproteins that exhibit distinct subcellular localizations. J. Biol. Chem. 275, 27933–27939 (2000).
Article CAS PubMed Google Scholar
Hewett, J. et al. TorsinA in PC12 cells: localization in the endoplasmic reticulum and response to stress. J. Neurosci. Res. 72, 158–168 (2003).
Article CAS PubMed Google Scholar
Goodchild, R. E. & Dauer, W. T. Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc. Natl Acad. Sci. USA 101, 847–852 (2004).
Article CAS PubMed PubMed Central Google Scholar
Naismith, T. V., Heuser, J. E., Breakefield, X. O. & Hanson, P. I. TorsinA in the nuclear envelope. Proc. Natl Acad. Sci. USA 101, 7612–7617 (2004).
Article CAS PubMed PubMed Central Google Scholar
Gonzalez-Alegre, P. & Paulson, H. L. Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J. Neurosci. 24, 2593–2601 (2004).
Article CAS PubMed PubMed Central Google Scholar
Gerace, L. TorsinA and torsion dystonia: unraveling the architecture of the nuclear envelope. Proc. Natl Acad. Sci. USA 101, 8839–8840 (2004).
Article CAS PubMed PubMed Central Google Scholar
Goodchild, R. E. & Dauer, W. T. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J. Cell Biol. 168, 855–862 (2005).
Article CAS PubMed PubMed Central Google Scholar
Callan, A. C., Bunning, S., Jones, O. T., High, S. & Swanton, E. Biosynthesis of the dystonia-associated AAA+ ATPase torsinA at the endoplasmic reticulum. Biochem. J. 401, 607–612 (2006).
Comments (0)