Zhong L, Li Y, Xiong L et al (2021) Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 6:201
Article PubMed PubMed Central Google Scholar
Ward RA, Fawell S, Floc’h N, Flemington V, McKerrecher D, Smith PD (2021) Challenges and Opportunities in Cancer Drug Resistance. Chem Rev 121:3297–3351
Article CAS PubMed Google Scholar
Richman SA, Nunez-Cruz S, Moghimi B et al (2018) High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model. Cancer Immunol Res 6:36–46
Article CAS PubMed Google Scholar
Leko V, Rosenberg SA (2020) Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell 38:454–472
Article CAS PubMed PubMed Central Google Scholar
Altai M, Membreno R, Cook B, Tolmachev V, Zeglis BM (2017) Pretargeted Imaging and Therapy. J Nucl Med 58:1553–1559
Article CAS PubMed PubMed Central Google Scholar
Boerman OC, van Schaijk FG, Oyen WJ, Corstens FH (2003) Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 44:400–411
Kasinskas RW, Forbes NS (2006) Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng 94:710–721
Article CAS PubMed Google Scholar
Kwon SY, Jiang SN, Zheng JH, Choy HE, Min JJ (2014) Rhodobacter sphaeroides, a novel tumor-targeting bacteria that emits natural near-infrared fluorescence. Microbiol Immunol 58:172–179
Article CAS PubMed Google Scholar
Nguyen VH, Kim HS, Ha JM, Hong Y, Choy HE, Min JJ (2010) Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res 70:18–23
Article CAS PubMed Google Scholar
Hapuarachchige S, Artemov D (2020) Theranostic Pretargeting Drug Delivery and Imaging Platforms in Cancer Precision Medicine. Front Oncol 10:1131
Article PubMed PubMed Central Google Scholar
Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243:85–88
Article CAS PubMed Google Scholar
Lesch HP, Kaikkonen MU, Pikkarainen JT, Yla-Herttuala S (2010) Avidin-biotin technology in targeted therapy. Expert Opin Drug Deliv 7:551–564
Article CAS PubMed Google Scholar
Chen MH, Soda Y, Izawa K et al (2013) A versatile drug delivery system using streptavidin-tagged pegylated liposomes and biotinylated biomaterials. Int J Pharm 454:478–485
Article CAS PubMed Google Scholar
Lim KH, Huang H, Pralle A, Park S (2013) Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol Bioeng 110:57–67
Article CAS PubMed Google Scholar
Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172
Article PubMed PubMed Central Google Scholar
Bataille L, Dieryck W, Hocquellet A et al (2015) Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag. Protein Expr Purif 110:165–171
Article CAS PubMed Google Scholar
Olins PO, Rangwala SH (1990) Vector for enhanced translation of foreign genes in Escherichia coli. Methods Enzymol 185:115–119
Article CAS PubMed Google Scholar
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US)
Min JJ, Kim HJ, Park JH et al (2008) Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imaging Biol 10:54–61
Sano T, Vajda S, Reznik GO, Smith CL, Cantor CR (1996) Molecular engineering of streptavidin. Ann N Y Acad Sci 799:383–390
Article CAS PubMed Google Scholar
Green NM (1975) Avidin. Adv Protein Chem 29:85–133
Article CAS PubMed Google Scholar
Rusckowski M, Fogarasi M, Fritz B, Hnatowich DJ (1997) Effect of endogenous biotin on the applications of streptavidin and biotin in mice. Nucl Med Biol 24:263–268
Article CAS PubMed Google Scholar
Wu SC, Wong SL (2005) Engineering soluble monomeric streptavidin with reversible biotin binding capability. J Biol Chem 280:23225–23231
Article CAS PubMed Google Scholar
Aslan FM, Yu Y, Vajda S, Mohr SC, Cantor CR (2007) Engineering a novel, stable dimeric streptavidin with lower isoelectric point. J Biotechnol 128:213–225
Article CAS PubMed Google Scholar
Helppolainen SH, Nurminen KP, Maatta JA et al (2007) Rhizavidin from Rhizobium etli: the first natural dimer in the avidin protein family. Biochem J 405:397–405
Article CAS PubMed PubMed Central Google Scholar
Pandeya A, Yang L, Alegun O et al (2021) Biotinylation as a tool to enhance the uptake of small molecules in Gram-negative bacteria. PLoS ONE 16:e0260023
Article CAS PubMed PubMed Central Google Scholar
Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10:785–794
Article CAS PubMed PubMed Central Google Scholar
Patra M, Zarschler K, Pietzsch HJ, Stephan H, Gasser G (2016) New insights into the pretargeting approach to image and treat tumours. Chem Soc Rev 45:6415–6431
Article CAS PubMed Google Scholar
Luke JJ, Piha-Paul SA, Medina T et al (2023) Phase I Study of SYNB1891, an Engineered E. coli Nissle Strain Expressing STING Agonist, with and without Atezolizumab in Advanced Malignancies. Clin Cancer Res 29:2435–2444
Article CAS PubMed PubMed Central Google Scholar
Lynch JP, Goers L, Lesser CF (2022) Emerging strategies for engineering Escherichia coli Nissle 1917-based therapeutics. Trends Pharmacol Sci 43:772–786
Article CAS PubMed PubMed Central Google Scholar
Kang SR, Nguyen DH, Yoo SW, Min JJ (2022) Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 181:114085
Article CAS PubMed Google Scholar
Jiang SN, Park SH, Lee HJ et al (2013) Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther 21:1985–1995
Comments (0)