Left Ventricular Remodelling Associated with the Transient Elevated [68Ga]Ga-Pentixafor Activity in the Remote Myocardium Following Acute Myocardial Infarction

Virani SS, Alonso A, Aparicio HJ et al (2021) American Heart Association Council on epidemiology and prevention statistics committee and stroke statistics subcommittee. Heart disease and stroke Statistics-2021 update: a report from the American Heart Association. Circulation 143(8):e254–e743

Article  PubMed  Google Scholar 

Ong SB, Hernández-Reséndiz S, Crespo-Avilan G et al (2018) Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 186:73–87

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matter MA, Paneni F, Libby P et al (2024) Inflammation in acute myocardial infarction: the good, the bad and the ugly. Eur Heart J 45(2):89–103

Article  PubMed  Google Scholar 

Cerisano G, Buonamici P, Valenti R et al (2014) Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J 35(3):184–191

Article  CAS  PubMed  Google Scholar 

Hess A, Derlin T, Koenig T et al (2020) Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur Heart J 41(37):3564–3575

Article  CAS  PubMed  Google Scholar 

Lee WW, Marinelli B, van der Laan AM et al (2012) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59(2):153–163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westman PC, Lipinski MJ, Luger D et al (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67(17):2050–2060

Article  PubMed  Google Scholar 

Celiker-Guler E, Ruddy TD, Wells RG (2021) Acquisition, processing, and interpretation of PET 18F-FDG viability and inflammation studies. Curr Cardiol Rep 23(9):124

Article  PubMed  Google Scholar 

Fischer M, Zacherl MJ, Weckbach L et al (2021) Cardiac 18F-FDG positron emission tomography: an accurate tool to monitor in vivo metabolic and functional alterations in murine myocardial infarction. Front Cardiovasc Med 8:656742

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wollenweber T, Roentgen P, Schäfer A et al (2014) Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ Cardiovasc Imaging 7(5):811–818

Article  PubMed  Google Scholar 

Xi XY, Zhang F, Wang J et al (2020) Functional significance of post-myocardial infarction inflammation evaluated by 18F-fluorodeoxyglucose imaging in swine model. J Nucl Cardiol 27(2):519–531

Article  PubMed  Google Scholar 

Zhou W, Guo S, Liu M et al (2019) Targeting CXCL12/CXCR4 Axis in tumor immunotherapy. Curr Med Chem 26(17):3026–3041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Xue Q, Huang C et al (2022) Burkitt lymphoma/leukemia presented on 68Ga-Pentixafor and 18F-FDG PET/CT. Clin Nucl Med 47(1):98–100

Article  PubMed  Google Scholar 

Pan Q, Cao X, Luo Y et al (2020) Chemokine receptor-4 targeted PET/CT with 68Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: comparison to 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 47(3):537–546

Article  CAS  PubMed  Google Scholar 

Herhaus P, Habringer S, Philipp-Abbrederis K et al (2016) Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica 101(8):932–940

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galsky MD, Vogelzang NJ, Conkling P et al (2014) A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin Cancer Res 20(13):3581–3588

Article  CAS  PubMed  Google Scholar 

Herrmann K, Schottelius M, Lapa C et al (2016) First-in-human experience of CXCR4-directed Endoradiotherapy with 177Lu- and 90Y-labeled Pentixather in advanced-stage multiple myeloma with extensive intra- and Extramedullary disease. J Nucl Med 57(2):248–251

Article  CAS  PubMed  Google Scholar 

Li X, Yu W, Wollenweber T et al (2019) [68Ga]Pentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. Eur J Nucl Med Mol Imaging 46(8):1616–1625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thackeray JT, Derlin T, Haghikia A et al (2015) Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc Imaging 8(12):1417–1426

Article  PubMed  Google Scholar 

Pan D, Xu YP, Yang RH et al (2014) A new (68)Ga-labeled BBN peptide with a hydrophilic linker for GRPR-targeted tumor imaging. Amino Acids 46(6):1481–1489

Article  CAS  PubMed  Google Scholar 

Krasikova R (2007) Synthesis modules and automation in F-18 labeling. Ernst Schering Res Found Workshop 62:289–316

Article  CAS  Google Scholar 

Döring Y, Pawig L, Weber C et al (2014) The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 5:212

PubMed  PubMed Central  Google Scholar 

Huang S, Frangogiannis NG (2018) Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol 175(9):1377–1400

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131

Article  CAS  PubMed  Google Scholar 

Reiter T, Kircher M, Schirbel A et al (2018) Imaging of C-X-C motif chemokine receptor CXCR4 expression after myocardial infarction with [68Ga]Pentixafor-PET/CT in correlation with cardiac MRI. JACC Cardiovasc Imaging 11(10):1541–1543

Article  PubMed  Google Scholar 

Hess A, Borchert T, Ross TL et al (2022) Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging. Basic Res Cardiol 117(1):14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werner RA, Hess A, Koenig T et al (2021) Molecular imaging of inflammation crosstalk along the cardio-renal axis following acute myocardial infarction. Theranostics 11(16):7984–7994

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrmann K, Lapa C, Wester HJ et al (2015) Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med 56(3):410–416

Article  CAS  PubMed  Google Scholar 

Bethke A, Shanmuganathan L, Andersen GØ et al (2019) Microvascular perfusion in infarcted and remote myocardium after successful primary PCI: angiographic and CMR findings. Eur Radiol 29(2):941–950

Article  PubMed  Google Scholar 

Van Herck PL, Paelinck BP, Haine SE et al (2013) Impaired coronary flow reserve after a recent myocardial infarction: correlation with infarct size and extent of microvascular obstruction. Int J Cardiol 167(2):351–356

Article  PubMed  Google Scholar 

Wu P, Guo XS, Zhang X et al (2020) Value of absolute quantification of myocardial perfusion by PET in detecting coronary microvascular disease in patients with non-obstructive coronaries. Zhonghua Xin Xue Guan Bing Za Zhi 48(3):205–210

CAS  PubMed 

Comments (0)

No login
gif