Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15(9):605–619. https://doi.org/10.1038/nrd.2016.109
Article PubMed CAS Google Scholar
Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534. https://doi.org/10.1126/science.274.5292.1531
Article PubMed CAS Google Scholar
Walsh L, Erlanson DA, de Esch IJP, Jahnke W, Woodhead A, Wren E (2023) Fragment-to-lead medicinal chemistry publications in 2021. J Med Chem 66(2):1137–1156. https://doi.org/10.1021/acs.jmedchem.2c01827
Article PubMed CAS Google Scholar
Dalvit C, Vulpetti A (2019) Ligand-based fluorine NMR screening: principles and applications in drug discovery projects. J Med Chem 62(5):2218–2244. https://doi.org/10.1021/acs.jmedchem.8b01210
Article PubMed CAS Google Scholar
Vulpetti A, Lingel A, Dalvit C, Schiering N, Oberer L, Henry C, Lu Y (2022) Efficient screening of target-specific selected compounds in mixtures by 19F NMR binding assay with predicted 19F NMR chemical shifts. ChemMedChem 17(13):e202200163. https://doi.org/10.1002/cmdc.202200163
Article PubMed CAS Google Scholar
Aires-de-Sousa J, Hemmer MC, Gasteiger J (2001) Prediction of 1H NMR chemical shifts using neural networks. Anal Chem 74(1):80–90. https://doi.org/10.1021/ac010737m
Meiler J, Maier W, Will M, Meusinger R (2002) Using neural networks for 13C NMR chemical shift prediction-comparison with traditional methods. J Magn Reson 157(2):242–252. https://doi.org/10.1006/jmre.2002.2599
Article PubMed CAS Google Scholar
Jonas E, Kuhn S (2019) Rapid prediction of NMR spectral properties with quantified uncertainty. J Cheminform. https://doi.org/10.1186/s13321-019-0374-3
Article PubMed PubMed Central Google Scholar
Kwon Y, Lee D, Choi Y-S, Kang M, Kang S (2020) Neural message passing for NMR chemical shift prediction. J Chem Inf Model 60(4):2024–2030. https://doi.org/10.1021/acs.jcim.0c00195
Article PubMed CAS Google Scholar
Kang S, Kwon Y, Lee D, Choi Y-S (2020) Predictive modeling of NMR chemical shifts without using atomic-level annotations. J Chem Inf Model 60(8):3765–3769. https://doi.org/10.1021/acs.jcim.0c00494
Article PubMed CAS Google Scholar
Gao P, Zhang J, Sun Y, Yu J (2020) Toward accurate predictions of atomic properties via quantum mechanics descriptors augmented graph convolutional neural network: application of this novel approach in NMR chemical shifts predictions. J Phys Chem Lett 11(22):9812–9818. https://doi.org/10.1021/acs.jpclett.0c02654
Article PubMed CAS Google Scholar
Han H, Choi S (2021) Transfer learning from simulation to experimental data: NMR chemical shift predictions. J Phys Chem Lett 12(14):3662–3668. https://doi.org/10.1021/acs.jpclett.1c00578
Article PubMed CAS Google Scholar
Guan Y, Shree Sowndarya SV, Gallegos LC, St. John PC, Paton RS, (2021) Real-time prediction of 1H and 13C chemical shifts with DFT accuracy using a 3D graph neural network. Chem Sci 12(36):12012–12026. https://doi.org/10.1039/d1sc03343c
Article PubMed PubMed Central CAS Google Scholar
Blinov KA, Smurnyy YD, Churanova TS, Elyashberg ME, Williams AJ (2009) Development of a fast and accurate method of 13C NMR chemical shift prediction. Chemom Intell Lab Syst 97(1):91–97. https://doi.org/10.1016/j.chemolab.2009.01.010
Paruzzo FM, Hofstetter A, Musil F, De S, Ceriotti M, Emsley L (2018) Chemical shifts in molecular solids by machine learning. Nat Commun 9(1):4501. https://doi.org/10.1038/s41467-018-06972-x
Article PubMed PubMed Central CAS Google Scholar
Krivdin LB (2020) Computational aspects of 19F NMR. Russ Chem Rev 89(10):1040–1073. https://doi.org/10.1070/rcr4948
Dumon AS, Rzepa HS, Alamillo-Ferrer C, Bures J, Procter R, Sheppard TD, Whiting A (2022) A computational tool to accurately and quickly predict 19F NMR chemical shifts of molecules with fluorine–carbon and fluorine–boron bonds. Phys Chem Chem Phys 24(34):20409–20425. https://doi.org/10.1039/D2CP02317B
Article PubMed CAS Google Scholar
Saielli G, Bini R, Bagno A (2014) Computational 19F NMR. 2. organic compounds. RSC Adv. 4(78):41605–41611. https://doi.org/10.1039/c4ra08290g
Vulpetti A, Dalvit C (2013) Design and generation of highly diverse fluorinated fragment libraries and their efficient screening with improved 19F NMR methodology. ChemMedChem 8(12):2057–2069. https://doi.org/10.1002/cmdc.201300351
Article PubMed CAS Google Scholar
Enamine. Fluorinated Fragment Library-Enamine. https://enamine.net/compound-libraries/fragment-libraries/fluorinated-fragment-library Accessed 4 May 2023
Vulpetti A, Hommel U, Landrum G, Lewis R, Dalvit C (2009) Design and NMR-based screening of LEF, a library of chemical fragments with different local environment of fluorine. J Am Chem Soc 131(36):12949–12959. https://doi.org/10.1021/ja905207t
Article PubMed CAS Google Scholar
Vulpetti A, Landrum G, Rüdisser S, Erbel P, Dalvit C (2010) 19F NMR chemical shift prediction with fluorine fingerprint descriptor. J Fluorine Chem 131(5):570–577. https://doi.org/10.1016/j.jfluchem.2009.12.024
Lu Y, Anand S, Shirley W, Gedeck P, Kelley BP, Skolnik S, Rodde S, Nguyen M, Lindvall M, Jia W (2019) Prediction of pKa using machine learning methods with rooted topological torsion fingerprints: application to aliphatic amines. J Chem Inf Model 59(11):4706–4719. https://doi.org/10.1021/acs.jcim.9b00498
Article PubMed CAS Google Scholar
Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp 785–794
Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M, Palmer A, Settels V, Jaakkola T, Jensen K, Barzilay R (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59(8):3370–3388. https://doi.org/10.1021/acs.jcim.9b00237
Article PubMed PubMed Central CAS Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12(85):2825–2830
Landrum G, Tosco P, Kelley B, Ric, Sriniker, Gedeck, Vianello R, Cosgrove D, NadineSchneider, Kawashima E, N D, Dalke A, Jones G, Cole B, Swain M, Turk S, AlexanderSavelyev, Vaucher A, Wójcikowski M, Take I, Probst D, Ujihara K, Scalfani VF, Godin G, Pahl A, Berenger F, JLVarjo, Strets, JP, DoliathGavid (2022) rdkit/rdkit: 2022_09_3 (Q3 2022) release. https://doi.org/10.5281/zenodo.7415128
Milletti F, Storchi L, Sforna G, Cruciani G (2007) New and original pKa prediction method using grid molecular interaction fields. J Chem Inf Model 47(6):2172–2181. https://doi.org/10.1021/ci700018y
Article PubMed CAS Google Scholar
Milletti F, Storchi L, Sforna G, Cross S, Cruciani G (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49(1):68–75. https://doi.org/10.1021/ci800340j
Article PubMed CAS Google Scholar
Milletti F, Vulpetti A (2010) Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J Chem Inf Model 50(6):1062–1074. https://doi.org/10.1021/ci900501c
Article PubMed CAS Google Scholar
Friedrich N-O, Flachsenberg F, Meyder A, Sommer K, Kirchmair J, Rarey M (2019) Conformator: a novel method for the generation of conformer ensembles. J Chem Inf Model 59(2):731–742. https://doi.org/10.1021/acs.jcim.8b00704
Article PubMed CAS Google Scholar
Bannwarth C, Ehlert S, Grimme S (2019) GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J Chem Theory Comput 15(3):1652–1671. https://doi.org/10.1021/acs.jctc.8b01176
Article PubMed CAS Google Scholar
Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162(3):165–169. https://doi.org/10.1016/0009-2614(89)85118-8
Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. Mol Phys 27(4):789–807. https://doi.org/10.1080/00268977400100711
Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297. https://doi.org/10.1039/b508541a
Article PubMed CAS Google Scholar
Keal TW, Tozer DJ (2004) A semiempirical generalized gradient approximation exchange-correlation functional. J Chem Phys 121(12):5654–5660. https://doi.org/10.1063/1.1784777
Comments (0)