QM assisted ML for 19F NMR chemical shift prediction

Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15(9):605–619. https://doi.org/10.1038/nrd.2016.109

Article  PubMed  CAS  Google Scholar 

Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534. https://doi.org/10.1126/science.274.5292.1531

Article  PubMed  CAS  Google Scholar 

Walsh L, Erlanson DA, de Esch IJP, Jahnke W, Woodhead A, Wren E (2023) Fragment-to-lead medicinal chemistry publications in 2021. J Med Chem 66(2):1137–1156. https://doi.org/10.1021/acs.jmedchem.2c01827

Article  PubMed  CAS  Google Scholar 

Dalvit C, Vulpetti A (2019) Ligand-based fluorine NMR screening: principles and applications in drug discovery projects. J Med Chem 62(5):2218–2244. https://doi.org/10.1021/acs.jmedchem.8b01210

Article  PubMed  CAS  Google Scholar 

Vulpetti A, Lingel A, Dalvit C, Schiering N, Oberer L, Henry C, Lu Y (2022) Efficient screening of target-specific selected compounds in mixtures by 19F NMR binding assay with predicted 19F NMR chemical shifts. ChemMedChem 17(13):e202200163. https://doi.org/10.1002/cmdc.202200163

Article  PubMed  CAS  Google Scholar 

Aires-de-Sousa J, Hemmer MC, Gasteiger J (2001) Prediction of 1H NMR chemical shifts using neural networks. Anal Chem 74(1):80–90. https://doi.org/10.1021/ac010737m

Article  CAS  Google Scholar 

Meiler J, Maier W, Will M, Meusinger R (2002) Using neural networks for 13C NMR chemical shift prediction-comparison with traditional methods. J Magn Reson 157(2):242–252. https://doi.org/10.1006/jmre.2002.2599

Article  PubMed  CAS  Google Scholar 

Jonas E, Kuhn S (2019) Rapid prediction of NMR spectral properties with quantified uncertainty. J Cheminform. https://doi.org/10.1186/s13321-019-0374-3

Article  PubMed  PubMed Central  Google Scholar 

Kwon Y, Lee D, Choi Y-S, Kang M, Kang S (2020) Neural message passing for NMR chemical shift prediction. J Chem Inf Model 60(4):2024–2030. https://doi.org/10.1021/acs.jcim.0c00195

Article  PubMed  CAS  Google Scholar 

Kang S, Kwon Y, Lee D, Choi Y-S (2020) Predictive modeling of NMR chemical shifts without using atomic-level annotations. J Chem Inf Model 60(8):3765–3769. https://doi.org/10.1021/acs.jcim.0c00494

Article  PubMed  CAS  Google Scholar 

Gao P, Zhang J, Sun Y, Yu J (2020) Toward accurate predictions of atomic properties via quantum mechanics descriptors augmented graph convolutional neural network: application of this novel approach in NMR chemical shifts predictions. J Phys Chem Lett 11(22):9812–9818. https://doi.org/10.1021/acs.jpclett.0c02654

Article  PubMed  CAS  Google Scholar 

Han H, Choi S (2021) Transfer learning from simulation to experimental data: NMR chemical shift predictions. J Phys Chem Lett 12(14):3662–3668. https://doi.org/10.1021/acs.jpclett.1c00578

Article  PubMed  CAS  Google Scholar 

Guan Y, Shree Sowndarya SV, Gallegos LC, St. John PC, Paton RS, (2021) Real-time prediction of 1H and 13C chemical shifts with DFT accuracy using a 3D graph neural network. Chem Sci 12(36):12012–12026. https://doi.org/10.1039/d1sc03343c

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blinov KA, Smurnyy YD, Churanova TS, Elyashberg ME, Williams AJ (2009) Development of a fast and accurate method of 13C NMR chemical shift prediction. Chemom Intell Lab Syst 97(1):91–97. https://doi.org/10.1016/j.chemolab.2009.01.010

Article  CAS  Google Scholar 

Paruzzo FM, Hofstetter A, Musil F, De S, Ceriotti M, Emsley L (2018) Chemical shifts in molecular solids by machine learning. Nat Commun 9(1):4501. https://doi.org/10.1038/s41467-018-06972-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Krivdin LB (2020) Computational aspects of 19F NMR. Russ Chem Rev 89(10):1040–1073. https://doi.org/10.1070/rcr4948

Article  CAS  Google Scholar 

Dumon AS, Rzepa HS, Alamillo-Ferrer C, Bures J, Procter R, Sheppard TD, Whiting A (2022) A computational tool to accurately and quickly predict 19F NMR chemical shifts of molecules with fluorine–carbon and fluorine–boron bonds. Phys Chem Chem Phys 24(34):20409–20425. https://doi.org/10.1039/D2CP02317B

Article  PubMed  CAS  Google Scholar 

Saielli G, Bini R, Bagno A (2014) Computational 19F NMR. 2. organic compounds. RSC Adv. 4(78):41605–41611. https://doi.org/10.1039/c4ra08290g

Article  CAS  Google Scholar 

Vulpetti A, Dalvit C (2013) Design and generation of highly diverse fluorinated fragment libraries and their efficient screening with improved 19F NMR methodology. ChemMedChem 8(12):2057–2069. https://doi.org/10.1002/cmdc.201300351

Article  PubMed  CAS  Google Scholar 

Enamine. Fluorinated Fragment Library-Enamine. https://enamine.net/compound-libraries/fragment-libraries/fluorinated-fragment-library Accessed 4 May 2023

Vulpetti A, Hommel U, Landrum G, Lewis R, Dalvit C (2009) Design and NMR-based screening of LEF, a library of chemical fragments with different local environment of fluorine. J Am Chem Soc 131(36):12949–12959. https://doi.org/10.1021/ja905207t

Article  PubMed  CAS  Google Scholar 

Vulpetti A, Landrum G, Rüdisser S, Erbel P, Dalvit C (2010) 19F NMR chemical shift prediction with fluorine fingerprint descriptor. J Fluorine Chem 131(5):570–577. https://doi.org/10.1016/j.jfluchem.2009.12.024

Article  CAS  Google Scholar 

Lu Y, Anand S, Shirley W, Gedeck P, Kelley BP, Skolnik S, Rodde S, Nguyen M, Lindvall M, Jia W (2019) Prediction of pKa using machine learning methods with rooted topological torsion fingerprints: application to aliphatic amines. J Chem Inf Model 59(11):4706–4719. https://doi.org/10.1021/acs.jcim.9b00498

Article  PubMed  CAS  Google Scholar 

Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp 785–794

Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M, Palmer A, Settels V, Jaakkola T, Jensen K, Barzilay R (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59(8):3370–3388. https://doi.org/10.1021/acs.jcim.9b00237

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12(85):2825–2830

Google Scholar 

Landrum G, Tosco P, Kelley B, Ric, Sriniker, Gedeck, Vianello R, Cosgrove D, NadineSchneider, Kawashima E, N D, Dalke A, Jones G, Cole B, Swain M, Turk S, AlexanderSavelyev, Vaucher A, Wójcikowski M, Take I, Probst D, Ujihara K, Scalfani VF, Godin G, Pahl A, Berenger F, JLVarjo, Strets, JP, DoliathGavid (2022) rdkit/rdkit: 2022_09_3 (Q3 2022) release. https://doi.org/10.5281/zenodo.7415128

Milletti F, Storchi L, Sforna G, Cruciani G (2007) New and original pKa prediction method using grid molecular interaction fields. J Chem Inf Model 47(6):2172–2181. https://doi.org/10.1021/ci700018y

Article  PubMed  CAS  Google Scholar 

Milletti F, Storchi L, Sforna G, Cross S, Cruciani G (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49(1):68–75. https://doi.org/10.1021/ci800340j

Article  PubMed  CAS  Google Scholar 

Milletti F, Vulpetti A (2010) Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J Chem Inf Model 50(6):1062–1074. https://doi.org/10.1021/ci900501c

Article  PubMed  CAS  Google Scholar 

Friedrich N-O, Flachsenberg F, Meyder A, Sommer K, Kirchmair J, Rarey M (2019) Conformator: a novel method for the generation of conformer ensembles. J Chem Inf Model 59(2):731–742. https://doi.org/10.1021/acs.jcim.8b00704

Article  PubMed  CAS  Google Scholar 

Bannwarth C, Ehlert S, Grimme S (2019) GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J Chem Theory Comput 15(3):1652–1671. https://doi.org/10.1021/acs.jctc.8b01176

Article  PubMed  CAS  Google Scholar 

Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162(3):165–169. https://doi.org/10.1016/0009-2614(89)85118-8

Article  CAS  Google Scholar 

Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. Mol Phys 27(4):789–807. https://doi.org/10.1080/00268977400100711

Article  CAS  Google Scholar 

Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297. https://doi.org/10.1039/b508541a

Article  PubMed  CAS  Google Scholar 

Keal TW, Tozer DJ (2004) A semiempirical generalized gradient approximation exchange-correlation functional. J Chem Phys 121(12):5654–5660. https://doi.org/10.1063/1.1784777

Article  PubMed  CAS 

Comments (0)

No login
gif