Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
Akinosoglou KS, Karkoulias K, Marangos M. Infectious complications in patients with lung cancer. Eur Rev Med Pharmacol Sci. 2013;17(1):8–18.
Valvani A, Martin A, Devarajan A, Chandy D. Postobstructive pneumonia in lung cancer. Ann Transl Med. 2019;7(15):357.
Article PubMed PubMed Central Google Scholar
European Centre for Disease Prevention and Control Antimicrobial resistance in the EU/EEA (EARS-Net). Annual Epidemiological Report 2019. Trop Doct. 2020;30:114–6.
Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.
Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control. 2006;34(5):20–8. https://doi.org/10.1016/j.ajic.2006.05.238.
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–92. https://doi.org/10.1016/j.biotechadv.2018.11.013.
Article CAS PubMed Google Scholar
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic resistance in pseudomonas. Adv Exp Med Biol. 2022;1386:117–43. https://doi.org/10.1007/978-3-031-08491-1_5.
Article CAS PubMed Google Scholar
Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents. 2010;35(3):219–26. https://doi.org/10.1016/j.ijantimicag.2009.10.024.
Article CAS PubMed Google Scholar
da Silva BL, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA. Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification. Colloids Surf B. 2019;177:440–7.
Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on Zinc Oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7(3):219–42.
Adeniji OO, Ojemaye MO, Okoh AI. Antibacterial activity of metallic nanoparticles against multidrug-resistant pathogens isolated from environmental samples: nanoparticles/antibiotic combination therapy and cytotoxicity study. ACS Appl Bio Mater. 2022;5(10):4814–26.
Riahi S, Moussa NB, Lajnef M, Jebari N, Dabek A, Chtourou R, ..., Herth E. Bactericidal activity of ZnO nanoparticles against multidrug-resistant bacteria. J Mol Liq. 2023;122596.
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology advances in the detection and treatment of cancer: an overview. Nanotheranostics. 2022;6(4):400–23. https://doi.org/10.7150/ntno.74613.
Article PubMed PubMed Central Google Scholar
Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab. 2019;20(6):416–92. https://doi.org/10.2174/1389200219666180918111528.
Article CAS PubMed Google Scholar
Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer GeneTher. 2017;24(6):233–43. https://doi.org/10.1038/cgt.2017.16.
Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591–602. https://doi.org/10.1016/j.watres.2008.08.015.
Article CAS PubMed Google Scholar
Gao X, Yu Z, Tang X, Zhang H, Peng L, Li J. Augmented antibacterial mechanism of ZnO nanoparticles by labyrinthian-channel configuration of maize-stalk carbohydrate columns and sustainable strategy for water decontamination. J Hazard Mater. 2022;15(436):129258. https://doi.org/10.1016/j.jhazmat.2022.129258.
Zhu X, Wang J, Cai L, Wu Y, Ji M, Jiang H, Chen J. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. J Hazard Mater. 2022;15(430): 128436. https://doi.org/10.1016/j.jhazmat.2022.128436.
He M, Li X, Yu L, Deng S, Gu N, Li L, Jia J, Li B. Double-sided Nano-ZnO: superior antibacterial properties and induced hepatotoxicity in Zebrafish Embryos. Toxics. 2022;10(3):144. https://doi.org/10.3390/toxics10030144.
Article CAS PubMed PubMed Central Google Scholar
Yılmaz GE, Göktürk I, Ovezova M, Yılmaz F, Kılıç S, Denizli A. Antimicrobial nanomaterials: a review. Hygiene. 2023;3(3):269–90. https://doi.org/10.3390/hygiene3030020.
Guan G, Zhang L, Zhu J, Wu H, Li W, Sun Q. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. J Hazard Mater. 2021;15(402):123542. https://doi.org/10.1016/j.jhazmat.2020.123542.
Rayyif SMI, Mohammed HB, Curuțiu C, Bîrcă AC, Grumezescu AM, et al. ZnO Nanoparticles-Modified Dressings to Inhibit Wound Pathogens. Materials (Basel). 2021;14(11):3084. https://doi.org/10.3390/ma14113084.
Article CAS PubMed Google Scholar
Mendes CR, Dilarri G, Forsan CF, Sapata VMR, Lopes PRM, de Moraes PB, Montagnolli RN, Ferreira H, Bidoia ED. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep. 2022;12(1):2658. https://doi.org/10.1038/s41598-022-06657-y.
Article CAS PubMed PubMed Central Google Scholar
Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine. 2020;20(15):6247–62. https://doi.org/10.2147/IJN.S262876.
Irschik H, Schummer D, Gerth K, Höfle G, Reichenbach H. The tartrolons, newboron-containing antibiotics from a myxobacterium, Sorangium cellulosum. J Antibiot. 1995;48(1):26–30. https://doi.org/10.7164/antibiotics.48.26.
Shimizu Y, Ogasawara Y, Matsumoto A, Dairi T. Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway. J Antibiot. 2018;11:968–70. https://doi.org/10.1038/s41429-018-0087-2.
Yilmaz MT. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk J Med Sci. 2012;42:1423–9. https://doi.org/10.3906/sag-1205-83.
Blech M, Martin C, Borrelly J, Hartemann P. Treatment of deep wounds with loss of tissue. Value of a 3% boric acid solution. Presse Med. 1990;19(22):1050–2.
Doğan A, Demirci S, Çağlayan AB, Kılıç E, Günal MY, Uslu Ü, et al. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biol Trace Elem Res. 2014;162:72–9. https://doi.org/10.1007/s12011-014-0104-7.
Article CAS PubMed Google Scholar
Demirci S, Doğan A, Karakuş E, Halıcı Z, Topçu A, Demirci E, et al. Boron and poloxamer (F68 and F127) containing hydrogel formulation for burn wound healing. Biol Trace Elem Res. 2015;168:169–80. https://doi.org/10.1007/s12011-015-0338-z.
Article CAS PubMed Google Scholar
Celebi D, Taghizadehghalehjough A, Baser S, Genc S, Yilmaz A, Yeni Y, et al. Effects of boric acid and potassium metaborate on cytokine levels and redox stress parameters in a wound model infected with methicillin resistant Staphylococcus aureus. Mol Med Rep. 2022;26:294. https://doi.org/10.3892/mmr.2022.12809.
Celebi O, Celebi D, Baser S, et al. Antibacterial activity of Boron compounds against Biofilm-forming pathogens. Biol Trace Elem Res. 2023;202:346–59. https://doi.org/10.1007/s12011-023-03768-z.
Article CAS PubMed Google Scholar
Biendo M, Laurans G, Lefebvre JF, Daoudi F, Eb F. Epidemiological study of an Acinetobacter baumannii outbreak by using a combination of antibiotyping and ribotyping. J Clin Microbiol. 1999;37(7):2170–5. https://doi.org/10.1128/jcm.37.7.2170-2175.1999.
Article CAS PubMed PubMed Central Google Scholar
Fukuoka T, Ohya S, Narita T, Katsuta M, Iijima M, Masuda N. Activity of the carbapenem panipenem and role of the OprD (D2) protein in its diffusion through the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother. 1993;37(2):322–7. https://doi.org/10.1128/AAC.37.2.322.
Article CAS PubMed PubMed Central Google Scholar
Elsner HA, Sobottka I, Mack D, Claussen M, Laufs R, Wirth R. Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur J Clin Microbiol Infect Dis. 2000;19(1):39–42. https://doi.org/10.1007/s100960050007.
Article CAS PubMed Google Scholar
Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33. https://doi.org/10.1128/AAC.39.6.1211.
Article CAS PubMed PubMed Central Google Scholar
Celebi D, Aydın E, Rakici E, et al. Evaluation of presence of clone ST131 and biofilm formation in ESBL producing and non-producing Escherichia coli strains. Mol Biol Rep. 2023;50:5949–56. https://doi.org/10.1007/s11033-023-08532-z.
Comments (0)