Ermann J. Pathogenesis of axial spondyloarthritis - sources and current state of knowledge. Rheum Dis Clin North Am. 2020;46(2):193–206. https://doi.org/10.1016/j.rdc.2020.01.016.
Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, Egawa G, et al. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry A. 2015;87(9):830–42. https://doi.org/10.1002/cyto.a.22725.
Article CAS PubMed PubMed Central Google Scholar
Niewold P, Ashhurst TM, Smith AL, King NJC. Evaluating spectral cytometry for immune profiling in viral disease. Cytometry A. 2020;97(11):1165–79. https://doi.org/10.1002/cyto.a.24211.
Article CAS PubMed Google Scholar
Park LM, Lannigan J, Jaimes MC. OMIP-069: forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A. 2020;97(10):1044–51. https://doi.org/10.1002/cyto.a.24213. Description of a 40-color staining panel for human immune cells documenting the power of spectral flow cytometry.
Article CAS PubMed PubMed Central Google Scholar
Sahir F, Mateo JM, Steinhoff M, Siveen KS. Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytometry A. 2020; https://doi.org/10.1002/cyto.a.24288. Description of a 43-color staining panel for human immune cells documenting the power of spectral flow cytometry.
Zuba-Surma EK, Ratajczak MZ. Analytical capabilities of the ImageStream cytometer. Methods Cell Biol. 2011;102:207–30. https://doi.org/10.1016/b978-0-12-374912-3.00008-0.
Schraivogel D, Kuhn TM, Rauscher B, Rodriguez-Martinez M, Paulsen M, Owsley K, et al. High-speed fluorescence image-enabled cell sorting. Science. 2022;375(6578):315–20. https://doi.org/10.1126/science.abj3013.
Article CAS PubMed PubMed Central Google Scholar
Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81(16):6813–22. https://doi.org/10.1021/ac901049w.
Article CAS PubMed Google Scholar
Tsai AG, Glass DR, Juntilla M, Hartmann FJ, Oak JS, Fernandez-Pol S, et al. Multiplexed single-cell morphometry for hematopathology diagnostics. Nat Med. 2020;26(3):408–17. https://doi.org/10.1038/s41591-020-0783-x.
Article CAS PubMed PubMed Central Google Scholar
Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. Trends Immunol. 2012;33(7):323–32. https://doi.org/10.1016/j.it.2012.02.010.
Article CAS PubMed PubMed Central Google Scholar
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82. https://doi.org/10.1038/nmeth.1315.
Article CAS PubMed Google Scholar
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14. https://doi.org/10.1016/j.cell.2015.05.002.
Article CAS PubMed PubMed Central Google Scholar
Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM 3rd, et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 2018;19(1):224. https://doi.org/10.1186/s13059-018-1603-1.
Article CAS PubMed PubMed Central Google Scholar
Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281–91 e9. https://doi.org/10.1016/j.cels.2018.11.005.
Article CAS PubMed PubMed Central Google Scholar
Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol. 2018;36(1):89–94. https://doi.org/10.1038/nbt.4042.
Article CAS PubMed Google Scholar
Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience. 2020;9(12) https://doi.org/10.1093/gigascience/giaa151.
Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–8. https://doi.org/10.1038/nmeth.4380.
Article CAS PubMed PubMed Central Google Scholar
Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 2017;35(10):936–9. https://doi.org/10.1038/nbt.3973.
Article CAS PubMed Google Scholar
Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486–90. https://doi.org/10.1038/nature14590.
Article CAS PubMed PubMed Central Google Scholar
Swanson E, Lord C, Reading J, Heubeck AT, Genge PC, Thomson Z, et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. Elife. 2021:10. https://doi.org/10.7554/eLife.63632.
Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL, Hao Y, Takeshima Y, et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol. 2021;39(10):1246–58. https://doi.org/10.1038/s41587-021-00927-2.
Article CAS PubMed PubMed Central Google Scholar
Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023:1–19. https://doi.org/10.1038/s41580-023-00615-w. State-of-the-art review of single-cell multi-omics.
Wang X, Fan D, Yang Y, Gimple RC, Zhou S. Integrative multi-omics approaches to explore immune cell functions: challenges and opportunities. iScience. 2023;26(4):106359. https://doi.org/10.1016/j.isci.2023.106359. State-of-the-art review of single-cell multi-omics
Article CAS PubMed PubMed Central Google Scholar
Bodenmiller B. Multiplexed epitope-based tissue imaging for discovery and healthcare applications. Cell Syst. 2016;2(4):225–38. https://doi.org/10.1016/j.cels.2016.03.008.
Article CAS PubMed Google Scholar
Rao A, Barkley D, Franca GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596(7871):211–20. https://doi.org/10.1038/s41586-021-03634-9. State-of-the-art review of spatial transcriptomics.
Article CAS PubMed PubMed Central Google Scholar
Hickey JW, Neumann EK, Radtke AJ, Camarillo JM, Beuschel RT, Albanese A, et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nat Methods. 2022;19(3):284–95. https://doi.org/10.1038/s41592-021-01316-y.
Article CAS PubMed Google Scholar
Moffitt JR, Lundberg E, Heyn H. The emerging landscape of spatial profiling technologies. Nat Rev Genet. 2022;23(12):741–59. https://doi.org/10.1038/s41576-022-00515-3. State-of-the-art review of spatial transcriptomics.
Article CAS PubMed Google Scholar
Ranjit S, Lanzano L, Libby AE, Gratton E, Levi M. Advances in fluorescence microscopy techniques to study kidney function. Nat Rev Nephrol. 2021;17(2):128–44. https://doi.org/10.1038/s41581-020-00337-8.
Article CAS PubMed Google Scholar
Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012;37(2):364–76. https://doi.org/10.1016/j.immuni.2012.07.011.
Article CAS PubMed PubMed Central Google Scholar
Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG, Samusik N, et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat Protoc. 2021;16(8):3802–35. https://doi.org/10.1038/s41596-021-00556-8. Imaging of up to 60 protein markers in tissue sections using DNA-conjugated monoclonal antibodies and fluorescently labelled oligonucleotide probes.
Article CAS PubMed PubMed Central Google Scholar
Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 2014;158(4):945–58. https://doi.org/10.1016/j.cell.2014.07.017.
Article CAS PubMed PubMed Central Google Scholar
Weiss KR, Voigt FF, Shepherd DP, Huisken J. Tutorial: practical considerations for tissue clearing and imaging. Nat Protoc. 2021;16(6):2732–48. https://doi.org/10.1038/s41596-021-00502-8.
Article CAS PubMed PubMed Central Google Scholar
Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417–22. https://doi.org/10.1038/nmeth.2869.
Article CAS PubMed Google Scholar
Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436–42. https://doi.org/10.1038/nm.3488.
Comments (0)