Rosacea in Older Adults and Pharmacologic Treatments

Two AM, Wu W, Gallo RL, Hata TR. Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors. J Am Acad Dermatol. 2015;72:749–58. https://doi.org/10.1016/j.jaad.2014.08.028. (quiz 759-760).

Article  PubMed  Google Scholar 

Aldrich N, Gerstenblith M, Fu P, Tuttle MS, Varma P, Gotow E, Cooper KD, Mann M, Popkin DL. Genetic vs environmental factors that correlate with rosacea: a cohort-based survey of twins. JAMA Dermatol. 2015;151:1213–9. https://doi.org/10.1001/jamadermatol.2015.2230.

Article  PubMed  Google Scholar 

Ahn CS, Huang WW. Rosacea pathogenesis. Dermatol Clin. 2018;36:81–6. https://doi.org/10.1016/j.det.2017.11.001.

Article  CAS  PubMed  Google Scholar 

Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T, Cogen AL, Gallo RL. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol. 2011;131:688–97. https://doi.org/10.1038/jid.2010.351.

Article  CAS  PubMed  Google Scholar 

Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol. 2018;40:249–59. https://doi.org/10.1007/s00281-018-0675-z.

Article  PubMed  PubMed Central  Google Scholar 

Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157:474–81. https://doi.org/10.1111/j.1365-2133.2007.08028.x.

Article  CAS  PubMed  Google Scholar 

Schwab VD, Sulk M, Seeliger S, Nowak P, Aubert J, Mess C, Rivier M, Carlavan I, Rossio P, Metze D, et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc. 2011;15:53–62. https://doi.org/10.1038/jidsymp.2011.6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamasaki K, Miyachi Y. Perspectives on rosacea patient characteristics and quality of life using baseline data from a phase 3 clinical study conducted in Japan. J Dermatol. 2022;49:1221–7. https://doi.org/10.1111/1346-8138.16596.

Article  PubMed  PubMed Central  Google Scholar 

Rainer BM, Fischer AH, Felipe L, da Silva D, Kang S, Chien AL. Rosacea is associated with chronic systemic diseases in a skin severity-dependent manner: results of a case-control study. J Am Acad Dermatol. 2015;73:604–8. https://doi.org/10.1016/j.jaad.2015.07.009.

Article  PubMed  Google Scholar 

Gallo RL, Granstein RD, Kang S, Mannis M, Steinhoff M, Tan J, Thiboutot D. Standard classification and pathophysiology of rosacea: the 2017 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2018;78:148–55. https://doi.org/10.1016/j.jaad.2017.08.037.

Article  PubMed  Google Scholar 

Tan J, Berg M, Gallo RL, Del Rosso JQ. Applying the phenotype approach for rosacea to practice and research. Br J Dermatol. 2018;179:741–6. https://doi.org/10.1111/bjd.16815.

Article  CAS  PubMed  Google Scholar 

Barakji YA, Ronnstad ATM, Christensen MO, Zachariae C, Wienholtz NKF, Halling AS, Maul JT, Thomsen SF, Egeberg A, Thyssen JP. Assessment of frequency of rosacea subtypes in patients with rosacea: a systematic review and meta-analysis. JAMA Dermatol. 2022;158:617–25. https://doi.org/10.1001/jamadermatol.2022.0526.

Article  PubMed  PubMed Central  Google Scholar 

Aponte JL, Chiano MN, Yerges-Armstrong LM, Hinds DA, Tian C, Gupta A, Guo C, Fraser DJ, Freudenberg JM, Rajpal DK, et al. Assessment of rosacea symptom severity by genome-wide association study and expression analysis highlights immuno-inflammatory and skin pigmentation genes. Hum Mol Genet. 2018;27:2762–72. https://doi.org/10.1093/hmg/ddy184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang F, Wang L, Shucheng H, Jiang X. Differences in clinical characteristics of rosacea across age groups: A retrospective study of 840 female patients. J Cosmet Dermatol. 2023;22:949–57. https://doi.org/10.1111/jocd.15470.

Article  PubMed  Google Scholar 

Woo YR, Lim JH, Cho DH, Park HJ. Rosacea: molecular mechanisms and management of a chronic cutaneous inflammatory condition. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17091562.

Article  PubMed  PubMed Central  Google Scholar 

Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13:975–80. https://doi.org/10.1038/nm1616.

Article  CAS  PubMed  Google Scholar 

De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192:1069–74. https://doi.org/10.1084/jem.192.7.1069.

Article  Google Scholar 

Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest. 2003;111:1665–72. https://doi.org/10.1172/JCI17545.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017;18:77. https://doi.org/10.1186/s13059-017-1212-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng Z, Chen M, Zhao Z, Xiao W, Liu T, Peng Q, Wu Z, Xu S, Shi W, Jian D, et al. Whole genome sequencing identifies genetic variants associated with neurogenic inflammation in rosacea. Nat Commun. 2023;14:3958. https://doi.org/10.1038/s41467-023-39761-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson KG, Rainer BM, Antonescu C, Florea L, Mongodin EF, Kang S, Chien AL. Comparison of the skin microbiota in acne and rosacea. Exp Dermatol. 2021;30:1375–80. https://doi.org/10.1111/exd.14098.

Article  CAS  PubMed  Google Scholar 

Rainer BM, Thompson KG, Antonescu C, Florea L, Mongodin EF, Bui J, Fischer AH, Pasieka HB, Garza LA, Kang S, et al. Characterization and analysis of the skin microbiota in rosacea: a case-control study. Am J Clin Dermatol. 2020;21:139–47. https://doi.org/10.1007/s40257-019-00471-5.

Article  PubMed  PubMed Central  Google Scholar 

Forton FMN. The pathogenic role of demodex mites in rosacea: a potential therapeutic target already in erythematotelangiectatic rosacea? Dermatol Ther (Heidelb). 2020;10:1229–53. https://doi.org/10.1007/s13555-020-00458-9.

Article  PubMed  Google Scholar 

Dahl MV, Ross AJ, Schlievert PM. Temperature regulates bacterial protein production: possible role in rosacea. J Am Acad Dermatol. 2004;50:266–72. https://doi.org/10.1016/j.jaad.2003.05.005.

Article  PubMed  Google Scholar 

Aghaei M, Aghaei S, Behshadnia F, Ghomashlooyan M, Khaghani A, Baradaran EH, Naeini FF, Iraji F, Shahmoradi Z, Hosseini SM, et al. Association between the Treatment of rosacea and eradication of Helicobacter pylori infection. Adv Biomed Res. 2023;12:173. https://doi.org/10.4103/abr.abr_236_22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson KG, Rainer BM, Kang S, Chien AL. The skin microbiota as a link between rosacea and its systemic comorbidities. Int J Dermatol. 2020;59:513–4. https://doi.org/10.1111/ijd.14802.

Article  PubMed  Google Scholar 

Woo, Y.R., Lee, S.H., Cho, S.H., Lee, J.D., Kim, H.S. Characterization and analysis of the skin microbiota in rosacea: impact of systemic antibiotics. J Clin Med 2020, 9, doi:https://doi.org/10.3390/jcm9010185.

Nam JH, Yun Y, Kim HS, Kim HN, Jung HJ, Chang Y, Ryu S, Shin H, Kim HL, Kim WS. Rosacea and its association with enteral microbiota in Korean females. Exp Dermatol. 2018;27:37–42. https://doi.org/10.1111/exd.13398.

Article  CAS  PubMed  Google Scholar 

Parodi A, Paolino S, Greco A, Drago F, Mansi C, Rebora A, Parodi A, Savarino V. Small intestinal bacterial overgrowth in rosacea: clinical effectiveness of its eradication. Clin Gastroenterol Hepatol. 2008;6:759–64. https://doi.org/10.1016/j.cgh.2008.02.054.

Article  PubMed  Google Scholar 

Drago F, De Col E, Agnoletti AF, Schiavetti I, Savarino V, Rebora A, Paolino S, Cozzani E, Parodi A. The role of small intestinal bacterial overgrowth in rosacea: A 3-year follow-up. J Am Acad Dermatol. 2016;75:e113–5. https://doi.org/10.1016/j.jaad.2016.01.059.

Article  PubMed  Google Scholar 

Gravina A, Federico A, Ruocco E, Lo Schiavo A, Masarone M, Tuccillo C, Peccerillo F, Miranda A, Romano L, de Sio C, et al. Helicobacter pylori infection but not small intestinal bacterial overgrowth may play a pathogenic role in rosacea. United European Gastroenterol J. 2015;3:17–24. https://doi.org/10.1177/2050640614559262.

Article  PubMed  PubMed Central  Google Scholar 

Lazaridou E, Korfitis C, Kemanetzi C, Sotiriou E, Apalla Z, Vakirlis E, Fotiadou C, Lallas A, Ioannides D. Rosacea and Helicobacter pylori: links and risks. Clin Cosmet Investig Dermatol. 2017;10:305–10. https://doi.org/10.2147/CCID.S121117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz C, O’Callaghan CJ, Khan A, Ilchyshyn A. Rosacea: a cutaneous marker of Helicobacter pylori infection? Results of a pilot study. Acta Derm Venereol. 2003;83:282–6. https://doi.org/10.1080/00015550310016544.

Article  PubMed 

Comments (0)

No login
gif