Substance P in the medial amygdala regulates aggressive behaviors in male mice

Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci. 2007;8:536–46.

Article  CAS  PubMed  Google Scholar 

Hoopfer ED. Neural control of aggression in Drosophila. Curr Opin Neurobiol. 2016;38:109–18.

Article  CAS  PubMed  Google Scholar 

Lischinsky JE, Lin D. Neural mechanisms of aggression across species. Nat Neurosci. 2020;23:1317–28.

Article  CAS  PubMed  Google Scholar 

Falkner AL, Lin D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front Syst Neurosci. 2014;8:168.

Article  PubMed  PubMed Central  Google Scholar 

Raam T, Hong W. Organization of neural circuits underlying social behavior: a consideration of the medial amygdala. Curr Opin Neurobiol. 2021;68:124–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keshavarzi S, Power JM, Albers EH, Sullivan RK, Sah P. Dendritic Organization of Olfactory Inputs to Medial Amygdala Neurons. J Neurosci. 2015;35:13020–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo Z, Yin L, Diaz V, Dai B, Osakada T, Lischinsky JE, et al. Neural dynamics in the limbic system during male social behaviors. Neuron. 2023;111:3288–306.e4.

Article  CAS  PubMed  Google Scholar 

Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, et al. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci. 2023;26:2131–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong W, Kim DW, Anderson DJ. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell. 2014;158:1348–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Unger EK, Burke KJ Jr, Yang CF, Bender KJ, Fuller PM, Shah NM. Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep. 2015;10:453–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nordman JC, Ma X, Gu Q, Potegal M, Li H, Kravitz AV, et al. Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation. J Neurosci. 2020;40:4858–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padilla SL, Qiu J, Soden ME, Sanz E, Nestor CC, Barker FD, et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci. 2016;19:734–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V. The tachykinin peptide family. Pharmacol Rev. 2002;54:285–322.

Article  CAS  PubMed  Google Scholar 

Krause JE, Chirgwin JM, Carter MS, Xu ZS, Hershey AD. Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci USA. 1987;84:881–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levine JD, Fields HL, Basbaum AI. Peptides and the primary afferent nociceptor. J Neurosci. 1993;13:2273–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicoll RA, Schenker C, Leeman SE. Substance P as a transmitter candidate. Annu Rev Neurosci. 1980;3:227–68.

Article  CAS  PubMed  Google Scholar 

Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev. 1993;73:229–308.

Article  CAS  PubMed  Google Scholar 

Commons KG. Neuronal pathways linking substance P to drug addiction and stress. Brain Res. 2010;1314:175–82.

Article  CAS  PubMed  Google Scholar 

He ZX, Yin YY, Xi K, Xing ZK, Cao JB, Liu TY, et al. Nucleus Accumbens Tac1-Expressing Neurons Mediate Stress-Induced Anhedonia-like Behavior in Mice. Cell Rep. 2020;33:108343.

Article  CAS  PubMed  Google Scholar 

He ZX, Xi K, Liu KJ, Yue MH, Wang Y, Yin YY, et al. A Nucleus Accumbens Tac1 Neural Circuit Regulates Avoidance Responses to Aversive Stimuli. Int J Mol Sci. 2023;24:4346.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khom S, Steinkellner T, Hnasko TS, Roberto M. Alcohol dependence potentiates substance P/neurokinin-1 receptor signaling in the rat central nucleus of amygdala. Sci Adv. 2020;6:eaaz1050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Z, Yang Y, Walker DL, Davis M. Effects of substance P in the amygdala, ventromedial hypothalamus, and periaqueductal gray on fear-potentiated startle. Neuropsychopharmacology. 2009;34:331–40.

Article  CAS  PubMed  Google Scholar 

Ebner K, Rupniak NM, Saria A, Singewald N. Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci USA. 2004;101:4280–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katsouni E, Sakkas P, Zarros A, Skandali N, Liapi C. The involvement of substance P in the induction of aggressive behavior. Peptides. 2009;30:1586–91.

Article  CAS  PubMed  Google Scholar 

Gregg TR, Siegel A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:91–140.

Article  CAS  PubMed  Google Scholar 

Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, Gonzalez CR, Eyjolfsdottir EA, et al. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell. 2014;156:221–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaikh MB, Steinberg A, Siegel A. Evidence that substance P is utilized in medial amygdaloid facilitation of defensive rage behavior in the cat. Brain Res. 1993;625:283–94.

Article  CAS  PubMed  Google Scholar 

Han Y, Shaikh MB, Siegel A. Medial amygdaloid suppression of predatory attack behavior in the cat: I Role of a substance P pathway from the medial amygdala to the medial hypothalamus. Brain Res. 1996;716:59–71.

Article  CAS  PubMed  Google Scholar 

Halasz J, Zelena D, Toth M, Tulogdi A, Mikics E, Haller J. Substance P neurotransmission and violent aggression: the role of tachykinin NK(1) receptors in the hypothalamic attack area. Eur J Pharmacol. 2009;611:35–43.

Article  CAS  PubMed  Google Scholar 

De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ, et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392:394–7.

Article  PubMed  Google Scholar 

He ZX, Song HF, Liu TY, Ma J, Xing ZK, Yin YY, et al. HuR in the Medial Prefrontal Cortex is Critical for Stress-Induced Synaptic Dysfunction and Depressive-Like Symptoms in Mice. Cereb Cortex. 2019;29:2737–47.

Article  PubMed  Google Scholar 

Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, et al. Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward. Neuron. 2015;87:1063–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Frontiers in neural circuits. 2014;8:76.

Article  PubMed  PubMed Central  Google Scholar 

Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D. Hypothalamic control of male aggression-seeking behavior. Nat Neurosci. 2016;19:596–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, et al. Esr1(+) cells in the ventromedial hypothalamus control female aggression. Nat Neurosci. 2017;20:1580–90.

Article  CAS  PubMed  PubMed Central  Google Scholar

Comments (0)

No login
gif