Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci. 2007;8:536–46.
Article CAS PubMed Google Scholar
Hoopfer ED. Neural control of aggression in Drosophila. Curr Opin Neurobiol. 2016;38:109–18.
Article CAS PubMed Google Scholar
Lischinsky JE, Lin D. Neural mechanisms of aggression across species. Nat Neurosci. 2020;23:1317–28.
Article CAS PubMed Google Scholar
Falkner AL, Lin D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front Syst Neurosci. 2014;8:168.
Article PubMed PubMed Central Google Scholar
Raam T, Hong W. Organization of neural circuits underlying social behavior: a consideration of the medial amygdala. Curr Opin Neurobiol. 2021;68:124–36.
Article CAS PubMed PubMed Central Google Scholar
Keshavarzi S, Power JM, Albers EH, Sullivan RK, Sah P. Dendritic Organization of Olfactory Inputs to Medial Amygdala Neurons. J Neurosci. 2015;35:13020–8.
Article CAS PubMed PubMed Central Google Scholar
Guo Z, Yin L, Diaz V, Dai B, Osakada T, Lischinsky JE, et al. Neural dynamics in the limbic system during male social behaviors. Neuron. 2023;111:3288–306.e4.
Article CAS PubMed Google Scholar
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, et al. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci. 2023;26:2131–46.
Article CAS PubMed PubMed Central Google Scholar
Hong W, Kim DW, Anderson DJ. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell. 2014;158:1348–61.
Article CAS PubMed PubMed Central Google Scholar
Unger EK, Burke KJ Jr, Yang CF, Bender KJ, Fuller PM, Shah NM. Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep. 2015;10:453–62.
Article CAS PubMed PubMed Central Google Scholar
Nordman JC, Ma X, Gu Q, Potegal M, Li H, Kravitz AV, et al. Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation. J Neurosci. 2020;40:4858–80.
Article CAS PubMed PubMed Central Google Scholar
Padilla SL, Qiu J, Soden ME, Sanz E, Nestor CC, Barker FD, et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci. 2016;19:734–41.
Article CAS PubMed PubMed Central Google Scholar
Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V. The tachykinin peptide family. Pharmacol Rev. 2002;54:285–322.
Article CAS PubMed Google Scholar
Krause JE, Chirgwin JM, Carter MS, Xu ZS, Hershey AD. Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci USA. 1987;84:881–5.
Article CAS PubMed PubMed Central Google Scholar
Levine JD, Fields HL, Basbaum AI. Peptides and the primary afferent nociceptor. J Neurosci. 1993;13:2273–86.
Article CAS PubMed PubMed Central Google Scholar
Nicoll RA, Schenker C, Leeman SE. Substance P as a transmitter candidate. Annu Rev Neurosci. 1980;3:227–68.
Article CAS PubMed Google Scholar
Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev. 1993;73:229–308.
Article CAS PubMed Google Scholar
Commons KG. Neuronal pathways linking substance P to drug addiction and stress. Brain Res. 2010;1314:175–82.
Article CAS PubMed Google Scholar
He ZX, Yin YY, Xi K, Xing ZK, Cao JB, Liu TY, et al. Nucleus Accumbens Tac1-Expressing Neurons Mediate Stress-Induced Anhedonia-like Behavior in Mice. Cell Rep. 2020;33:108343.
Article CAS PubMed Google Scholar
He ZX, Xi K, Liu KJ, Yue MH, Wang Y, Yin YY, et al. A Nucleus Accumbens Tac1 Neural Circuit Regulates Avoidance Responses to Aversive Stimuli. Int J Mol Sci. 2023;24:4346.
Article CAS PubMed PubMed Central Google Scholar
Khom S, Steinkellner T, Hnasko TS, Roberto M. Alcohol dependence potentiates substance P/neurokinin-1 receptor signaling in the rat central nucleus of amygdala. Sci Adv. 2020;6:eaaz1050.
Article CAS PubMed PubMed Central Google Scholar
Zhao Z, Yang Y, Walker DL, Davis M. Effects of substance P in the amygdala, ventromedial hypothalamus, and periaqueductal gray on fear-potentiated startle. Neuropsychopharmacology. 2009;34:331–40.
Article CAS PubMed Google Scholar
Ebner K, Rupniak NM, Saria A, Singewald N. Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci USA. 2004;101:4280–5.
Article CAS PubMed PubMed Central Google Scholar
Katsouni E, Sakkas P, Zarros A, Skandali N, Liapi C. The involvement of substance P in the induction of aggressive behavior. Peptides. 2009;30:1586–91.
Article CAS PubMed Google Scholar
Gregg TR, Siegel A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:91–140.
Article CAS PubMed Google Scholar
Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, Gonzalez CR, Eyjolfsdottir EA, et al. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell. 2014;156:221–35.
Article CAS PubMed PubMed Central Google Scholar
Shaikh MB, Steinberg A, Siegel A. Evidence that substance P is utilized in medial amygdaloid facilitation of defensive rage behavior in the cat. Brain Res. 1993;625:283–94.
Article CAS PubMed Google Scholar
Han Y, Shaikh MB, Siegel A. Medial amygdaloid suppression of predatory attack behavior in the cat: I Role of a substance P pathway from the medial amygdala to the medial hypothalamus. Brain Res. 1996;716:59–71.
Article CAS PubMed Google Scholar
Halasz J, Zelena D, Toth M, Tulogdi A, Mikics E, Haller J. Substance P neurotransmission and violent aggression: the role of tachykinin NK(1) receptors in the hypothalamic attack area. Eur J Pharmacol. 2009;611:35–43.
Article CAS PubMed Google Scholar
De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ, et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392:394–7.
He ZX, Song HF, Liu TY, Ma J, Xing ZK, Yin YY, et al. HuR in the Medial Prefrontal Cortex is Critical for Stress-Induced Synaptic Dysfunction and Depressive-Like Symptoms in Mice. Cereb Cortex. 2019;29:2737–47.
Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, et al. Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward. Neuron. 2015;87:1063–77.
Article CAS PubMed PubMed Central Google Scholar
Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Frontiers in neural circuits. 2014;8:76.
Article PubMed PubMed Central Google Scholar
Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D. Hypothalamic control of male aggression-seeking behavior. Nat Neurosci. 2016;19:596–604.
Article CAS PubMed PubMed Central Google Scholar
Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, et al. Esr1(+) cells in the ventromedial hypothalamus control female aggression. Nat Neurosci. 2017;20:1580–90.
Comments (0)