Future opportunities in solute carrier structural biology

Nicholls, D. G. & Ferguson, S. J. Bioenergetics 4th edn (Elsevier, 2013).

Drew, D. & Boudker, O. Ion and lipid orchestration of secondary active transport. Nature 626, 963–974 (2024).

CAS  PubMed  Google Scholar 

Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016).

CAS  PubMed  Google Scholar 

Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

CAS  PubMed  Google Scholar 

Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D.-N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003).

CAS  PubMed  Google Scholar 

White, S. H. mpstruc: Membrane Proteins of Known 3D Structure. Stephen White laboratory at UC Irvine https://blanco.biomol.uci.edu/mpstruc/ (2024).

Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

CAS  PubMed  PubMed Central  Google Scholar 

Bill, R. M. et al. Overcoming barriers to membrane protein structure determination. Nat. Biotechnol. 29, 335–340 (2011).

CAS  PubMed  Google Scholar 

Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

CAS  PubMed  Google Scholar 

Newstead, S., Kim, H., Von Heijne, G., Iwata, S. & Drew, D. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 104, 13936–13941 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Sonoda, Y. et al. Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19, 17–25 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Newstead, S., Ferrandon, S. & Iwata, S. Rationalizing α-helical membrane protein crystallization. Protein Sci. 17, 466–472 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Cherezov, V. et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam. J. R. Soc. Interface 6, S587–S597 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Kuhlbrandt, W. Biochemistry. The resolution revolution. Science 343, 1443–1444 (2014).

PubMed  Google Scholar 

Vallese, F. et al. Architecture of the human erythrocyte ankyrin-1 complex. Nat. Struct. Mol. Biol. 29, 706–718 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Hediger, M. A. et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch. 447, 465–468 (2004).

CAS  Google Scholar 

Schlessinger, A., Zatorski, N., Hutchinson, K. & Colas, C. Targeting SLC transporters: small molecules as modulators and therapeutic opportunities. Trends Biochem. Sci. 48, 801–814 (2023).

CAS  PubMed  Google Scholar 

Dvorak, V. & Superti-Furga, G. Structural and functional annotation of solute carrier transporters: implication for drug discovery. Expert Opin. Drug Discov. 18, 1099–1115 (2023).

CAS  PubMed  Google Scholar 

Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383 (2021).

CAS  PubMed  Google Scholar 

Han, L. et al. Structure and mechanism of the SGLT family of glucose transporters. Nature 601, 274–279 (2022).

CAS  PubMed  Google Scholar 

Niu, Y. et al. Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature 601, 280–284 (2022).

CAS  PubMed  Google Scholar 

Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14, 543–560 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Giacomini, K. M. et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9, 215–236 (2010).

CAS  PubMed  Google Scholar 

Parker, J. L. et al. Structural basis of antifolate recognition and transport by PCFT. Nature 595, 130–134 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Laursen, L. et al. Cholesterol binding to a conserved site modulates the conformation, pharmacology, and transport kinetics of the human serotonin transporter. J. Biol. Chem. 293, 3510–3523 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Zeppelin, T., Ladefoged, L. K., Sinning, S., Periole, X. & Schiott, B. A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Comput. Biol. 14, e1005907 (2018).

PubMed  PubMed Central  Google Scholar 

Mostyn, S. N. et al. Identification of an allosteric binding site on the human glycine transporter, GlyT2, for bioactive lipid analgesics. eLife 8, e47150 (2019).

PubMed  PubMed Central  Google Scholar 

Yan, R., Zhao, X., Lei, J. & Zhou, Q. Structure of the human LAT1–4F2hc heteromeric amino acid transporter complex. Nature 568, 127–130 (2019).

CAS  PubMed  Google Scholar 

Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann, I. et al. Generation of synthetic nanobodies against delicate proteins. Nat. Protoc. 15, 1707–1741 (2020).

CAS  PubMed  Google Scholar 

Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

PubMed  PubMed Central  Google Scholar 

Kriel, J., Haesendonckx, S., Rubio-Texeira, M., Van Zeebroeck, G. & Thevelein, J. M. From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. BioEssays 33, 870–879 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Schothorst, J. et al. Yeast nutrient transceptors provide novel insight in the functionality of membrane transporters. Curr. Genet. 59, 197–206 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Fan, S. J. & Goberdhan, D. C. I. PATs and SNATs: amino acid sensors in disguise. Front. Pharmacol. 9, 640 (2018).

PubMed  PubMed Central  Google Scholar 

Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Goberdhan, D. C., Wilson, C. & Harris, A. L. Amino acid sensing by mTORC1: intracellular transporters mark the spot. Cell Metab. 23, 580–589 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Newstead, S. & Barr, F. Molecular basis for KDEL-mediated retrieval of escaped ER-resident proteins — SWEET talking the COPs. J. Cell Sci. 133, jcs250100 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Ishida, H. et al. Cryo-EM structures of Toll-like receptors in complex with UNC93B1. Nat. Struct. Mol. Biol. 28, 173–180 (2021).

CAS  PubMed  Google Scholar 

Heinz, L. X. et al. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7–9. Nature 581, 316–322 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Wiedmer, T. et al. Accelerating SLC transporter research: streamlining knowledge and validated tools. Clin. Pharmacol. Ther. 112, 439–442 (2022).

PubMed  PubMed Central  Google Scholar 

Necelis, M., McDermott, C., Belcher Dufrisne, M., Baryiames, C. & Columbus, L. Solution NMR investigations of integral membrane proteins: challenges and innovations. Curr. Opin. Struct. Biol. 82, 102654 (2023).

CAS  PubMed  Google Scholar 

Heath, G. R. & Scheuring, S. Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr. Opin. Struct. Biol. 57, 93–102 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Bolla, J. R., Agasid, M. T., Mehmood, S. & Robinson, C. V. Membrane protein–lipid interactions probed using mass spectrometry. Annu. Rev. Biochem. 88, 85–111 (2019).

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif