Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).
Article CAS PubMed Google Scholar
Eisner, D., Neher, E., Taschenberger, H. & Smith, G. Physiology of intracellular calcium buffering. Physiol. Rev. 103, 2767–2845 (2023).
Article CAS PubMed Google Scholar
Moor, M. B. & Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. Renal Physiol. 310, F1337–F1350 (2016).
Article CAS PubMed Google Scholar
Jeon, U. S. Kidney and calcium homeostasis. Electrolyte Blood Press. 6, 68–76 (2008).
Article CAS PubMed PubMed Central Google Scholar
Alexander, R. T., Cordat, E., Chambrey, R., Dimke, H. & Eladari, D. Acidosis and urinary calcium excretion: insights from genetic disorders. J. Am. Soc. Nephrol. 27, 3511–3520 (2016).
Article CAS PubMed PubMed Central Google Scholar
Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 5, S23–S30 (2010).
Article CAS PubMed Google Scholar
Bosman, A. et al. Sexual dimorphisms in serum calcium and phosphate concentrations in the Rotterdam Study. Sci. Rep. 13, 8310 (2023).
Article CAS PubMed PubMed Central Google Scholar
Meoli, L. & Gunzel, D. The role of claudins in homeostasis. Nat. Rev. Nephrol. 19, 587–603 (2023).
Article CAS PubMed Google Scholar
Tinawi, M. Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 13, e12420 (2021).
PubMed PubMed Central Google Scholar
Alexander, R. T., Fuster, D. G. & Dimke, H. Mechanisms underlying calcium nephrolithiasis. Annu. Rev. Physiol. 84, 559–583 (2022).
Article CAS PubMed Google Scholar
Alexander, R. T. Kidney stones, hypercalciuria, and recent insights into proximal tubule calcium reabsorption. Curr. Opin. Nephrol. Hypertens. 32, 359–365 (2023).
Article CAS PubMed Google Scholar
Pan, W. et al. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am. J. Physiol. Renal Physiol. 302, F943–F956 (2012).
Article CAS PubMed Google Scholar
Beggs, M. R. et al. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc. Natl Acad. Sci. USA 118, e2111247118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Curry, J. N. et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J. Clin. Invest. 130, 1948–1960 (2020).
Article CAS PubMed PubMed Central Google Scholar
Plain, A. et al. Claudin-12 knockout mice demonstrate reduced proximal tubule calcium permeability. Int. J. Mol. Sci. 21, 2074 (2020).
Article CAS PubMed PubMed Central Google Scholar
Breiderhoff, T. et al. Claudin-10a deficiency shifts proximal tubular Cl− permeability to cation selectivity via claudin-2 redistribution. J. Am. Soc. Nephrol. 33, 699–717 (2022).
Article CAS PubMed PubMed Central Google Scholar
Rouse, D., Ng, R. C. & Suki, W. N. Calcium transport in the pars recta and thin descending limb of Henle of the rabbit, perfused in vitro. J. Clin. Invest. 65, 37–42 (1980).
Article CAS PubMed PubMed Central Google Scholar
Wiebe, S. A. et al. NHE8 attenuates Ca2+ influx into NRK cells and the proximal tubule epithelium. Am. J. Physiol. Renal Physiol. 317, F240–F253 (2019).
Article CAS PubMed Google Scholar
Hou, J. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Invest. 118, 619–628 (2008).
CAS PubMed PubMed Central Google Scholar
Hou, J. et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc. Natl Acad. Sci. USA 106, 15350–15355 (2009).
Article CAS PubMed PubMed Central Google Scholar
Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).
Article CAS PubMed Google Scholar
Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).
Article CAS PubMed PubMed Central Google Scholar
Zhang, M. et al. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal. Transduct. Target. Ther. 8, 261 (2023).
Article CAS PubMed PubMed Central Google Scholar
Nilius, B. & Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 12, 218 (2011).
Article CAS PubMed PubMed Central Google Scholar
Bacsa, B., Tiapko, O., Stockner, T. & Groschner, K. Mechanisms and significance of Ca2+ entry through TRPC channels. Curr. Opin. Physiol. 17, 25–33 (2020).
Article PubMed PubMed Central Google Scholar
Wang, H. et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 209, 107497 (2020).
Article CAS PubMed PubMed Central Google Scholar
Davis, M. J., Earley, S., Li, Y. S. & Chien, S. Vascular mechanotransduction. Physiol. Rev. 103, 1247–1421 (2023).
Article CAS PubMed PubMed Central Google Scholar
Nikolaev, Y. A. et al. Mammalian TRP ion channels are insensitive to membrane stretch. J. Cell Sci. 132, jcs238360 (2019).
Article CAS PubMed PubMed Central Google Scholar
Goel, M., Sinkins, W. G., Zuo, C. D., Estacion, M. & Schilling, W. P. Identification and localization of TRPC channels in the rat kidney. Am. J. Physiol. Renal Physiol. 290, F1241–F1252 (2006).
Article CAS PubMed Google Scholar
Staruschenko, A., Ma, R., Palygin, O. & Dryer, S. E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 103, 787–854 (2023).
Article CAS PubMed Google Scholar
Dryer, S. E., Roshanravan, H. & Kim, E. Y. TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1041–1066 (2019).
Article CAS PubMed Google Scholar
Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).
Article CAS PubMed Google Scholar
Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).
Article CAS PubMed PubMed Central Google Scholar
Zhou, Y. et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358, 1332–1336 (2017).
Article CAS PubMed PubMed Central Google Scholar
Polat, O. K. et al. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. Kidney Int. 103, 1056–1062 (2023).
Article CAS PubMed Google Scholar
Lenoir, O., Huber, T. B. & Tharaux, P. L. From bench to bedside: lessons learned from translational podocyte research. Kidney Int. 103, 1018–1020 (2023).
Comments (0)