Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).
Article CAS PubMed Google Scholar
Petzold, A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J. Neurochem. 163, 179–219 (2022).
Article CAS PubMed PubMed Central Google Scholar
Norgren, N., Karlsson, J.-E., Rosengren, L. & Stigbrand, T. Monoclonal antibodies selective for low molecular weight neurofilaments. Hybrid. Hybridomics 21, 53–59 (2002).
Article CAS PubMed Google Scholar
Disanto, G. et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 81, 857–870 (2017).
Article CAS PubMed PubMed Central Google Scholar
Gisslén, M. et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140 (2016).
Spitzenberger, F. et al. Laboratory-developed tests: design of a regulatory strategy in compliance with the international state-of-the-art and the regulation (EU) 2017/746 (EU IVDR [In Vitro Diagnostic Medical Device Regulation]). Ther. Innov. Regul. Sci. 56, 47–64 (2022).
Hauser, S. L. et al. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med. 383, 546–557 (2020).
Article CAS PubMed Google Scholar
Tabrizi, S. J. et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 380, 2307–2316 (2019).
Article CAS PubMed Google Scholar
Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).
Article CAS PubMed Google Scholar
Mullard, A. NfL makes regulatory debut as neurodegenerative disease biomarker. Nat. Rev. Drug Discov. 22, 431–434 (2023).
Article CAS PubMed Google Scholar
Biogen. FDA Grants Accelerated Approval for QALSODYTM(Tofersen) for SOD1-ALS, a Major Scientific Advancement as the First Treatment to Target a Genetic Cause of ALS https://investors.biogen.com/news-releases/news-release-details/fda-grants-accelerated-approval-qalsodytm-tofersen-sod1-als (2023).
Leptak, C. & Kozauer, N. Letter of Support to the International Progressive Multiple Sclerosis Alliance. U.S. Food & Drug Administration https://www.fda.gov/media/149608/download (2021).
Cooke, E. Letter of Support of Neurofilament Light in Childhood Neurological Diseases. European Medicines Agency https://www.ema.europa.eu/en/documents/other/letter-support-neurofilament-light-childhood-neurological-diseases_en.pdf (2022).
Koini, M. et al. Factors influencing serum neurofilament light chain levels in normal aging. Aging 13, 25729–25738 (2021).
Article CAS PubMed PubMed Central Google Scholar
Fitzgerald, K. C. et al. Contributors to serum NfL levels in people without neurologic disease. Ann. Neurol. 92, 688–698 (2022).
Article CAS PubMed PubMed Central Google Scholar
Benkert, P. et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 21, 246–257 (2022).
Shaw, G. et al. Uman-type neurofilament light antibodies are effective reagents for the imaging of neurodegeneration. Brain Commun. 5, fcad067 (2023).
Article PubMed PubMed Central Google Scholar
Gafson, A. R. et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain 143, 1975–1998 (2020).
Article PubMed PubMed Central Google Scholar
Andreasson, U. et al. Assessing the commutability of candidate reference materials for the harmonization of neurofilament light measurements in blood. Clin. Chem. Lab. Med. 61, 1245–1254 (2023).
Article CAS PubMed Google Scholar
Eldirany, S. A., Lomakin, I. B., Ho, M. & Bunick, C. G. Recent insight into intermediate filament structure. Curr. Opin. Cell Biol. 68, 132–143 (2021).
Article CAS PubMed Google Scholar
Ghosh, K., Huihui, J., Phillips, M. & Haider, A. Rules of physical mathematics govern intrinsically disordered proteins. Annu. Rev. Biophys. 51, 355–376 (2022).
Article CAS PubMed PubMed Central Google Scholar
Janmey, P. A., Leterrier, J.-F. & Herrmann, H. Assembly and structure of neurofilaments. Curr. Opin. Colloid Interface Sci. 8, 40–47 (2003).
Trimpin, S. et al. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry. Biochemistry 43, 2091–2105 (2004).
Article CAS PubMed Google Scholar
Petzold, A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci. 233, 183–198 (2005).
Article CAS PubMed Google Scholar
Rebelo, A. P. et al. Cryptic amyloidogenic elements in the 3’ UTRs of neurofilament genes trigger axonal neuropathy. Am. J. Hum. Genet. 98, 597–614 (2016).
Article CAS PubMed PubMed Central Google Scholar
Murray, K. A. et al. Identifying amyloid-related diseases by mapping mutations in low-complexity protein domains to pathologies. Nat. Struct. Mol. Biol. 29, 529–536 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xiao, S., McLean, J. & Robertson, J. Neuronal intermediate filaments and ALS: a new look at an old question. Biochim. Biophys. Acta Mol. Basis Dis. 1762, 1001–1012 (2006).
Petzold, A. et al. Protein aggregate formation permits millennium-old brain preservation. J. R. Soc. Interface 17, 20190775 (2020).
Article CAS PubMed PubMed Central Google Scholar
Briot, J., Simon, M. & Méchin, M.-C. Deimination, intermediate filaments and associated proteins. Int. J. Mol. Sci. 21, 8746 (2020).
Article CAS PubMed PubMed Central Google Scholar
Cloos, P. A. C. & Christgau, S. Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology 5, 139–158 (2004).
Article CAS PubMed Google Scholar
Yuzwa, S. A. et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol. 8, 393–399 (2012).
Article CAS PubMed Google Scholar
Zucchi, E. et al. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry. J. Neurochem. 146, 631–641 (2018).
Article CAS PubMed PubMed Central Google Scholar
Jones, J. B. & Safinya, C. R. Interplay between liquid crystalline and isotropic gels in self-assembled neurofilament networks. Biophys. J. 95, 823–835 (2008).
Article CAS PubMed PubMed Central Google Scholar
Lasek, R. J., Phillips, L., Katz, M. J. & Autilio-Gambetti, L. Function and evolution of neurofilament proteins. Ann. N. Y. Acad. Sci. 455, 462–478 (1985).
Article CAS PubMed Google Scholar
Monaco, S., Autilio-Gambetti, L., Lasek, R. J., Katz, M. J. & Gambetti, P. Experimental increase of neurofilament transport rate: decreases in neurofilament number and in axon diameter. J. Neuropathol. Exp. Neurol. 48, 23–32 (1989).
Article CAS PubMed Google Scholar
Lasek, R. J., Oblinger, M. M. & Drake, P. F. Molecular biology of neuronal geometry: expression of neurofilament genes influences axonal diameter. Cold Spring Harb. Symp. Quant. Biol. 48, 731–744 (1983).
Article CAS PubMed Google Scholar
Balaratnasingam, C. et al. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Invest. Ophthalmol. Vis. Sci. 48, 3632–3644 (2007).
Vial, J. D. The early changes in the axoplasm during Wallerian degeneration. J. Biophys. Biochem. Cytol. 4, 551–555 (1958).
Article CAS PubMed PubMed Central Google Scholar
Lasek, R. J. Bidirectional transport of radioactively labelled axoplasmic components. Nature 216, 1212–1214 (1967).
Comments (0)