Clinicopathological analysis of thyroid carcinomas with the RET and NTRK fusion genes: characterization for genetic analysis

Haroon Al Rasheed MR, Xu B (2019) Molecular alterations in thyroid carcinoma Surg Pathol Clin 12:921–930. https://doi.org/10.1016/j.path.2019.08.002

Lee YA, Lee H, Im SW, Song YS, Oh DY, Kang HJ, Won JK, Jung KC, Kwon D, Chung EJ, Hah JH, Paeng JC, Kim JH, Choi J, Kim OH, Oh JM, Ahn BC, Wirth LJ, Shin CH, Kim JI, Park YJ (2021) NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake J Clin Invest 131. https://doi.org/10.1172/JCI144847

Capdevila J, Awada A, Fuhrer-Sakel D, Leboulleux S, Pauwels P (2022) Molecular diagnosis and targeted treatment of advanced follicular cell-derived thyroid cancer in the precision medicine era. Cancer Treat Rev 106:102380. https://doi.org/10.1016/j.ctrv.2022.102380

Article  CAS  PubMed  Google Scholar 

Cabanillas ME, Ryder M, Jimenez C (2019) Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond. Endocr Rev 40:1573–1604. https://doi.org/10.1210/er.2019-00007

Article  PubMed Central  PubMed  Google Scholar 

Christofyllakis K, Bittenbring JT, Thurner L, Ahlgrimm M, Stilgenbauer S, Bewarder M, Kaddu-Mulindwa D (2022) Cost-effectiveness of precision cancer medicine-current challenges in the use of next generation sequencing for comprehensive tumour genomic profiling and the role of clinical utility frameworks (Review). Mol Clin Oncol 16:21. https://doi.org/10.3892/mco.2021.2453

Article  PubMed  Google Scholar 

Gavan SP, Thompson AJ, Payne K (2018) The economic case for precision medicine Expert Rev Precis Med Drug Dev 3:1–9. https://doi.org/10.1080/23808993.2018.1421858

Article  PubMed  Google Scholar 

Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM (2015) Wartofsky L (2016). American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer Thyroid 26:1–133. https://doi.org/10.1089/thy.2015.0020

Article  Google Scholar 

Thompson LDR, Poller DN, Kakudo K, Burchette R, Nikiforov YE, Seethala RR (2018) An international interobserver variability reporting of the nuclear scoring criteria to diagnose noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a validation study. Endocr Pathol 29:242–249. https://doi.org/10.1007/s12022-018-9520-0

Article  PubMed  Google Scholar 

Chou A, Qiu MR, Crayton H, Wang B, Ahadi MS, Turchini J, Clarkson A, Sioson L, Sheen A, Singh N, Clifton-Bligh RJ, Robinson BG, Gild ML, Tsang V, Leong D, Sidhu SB, Sywak M, Delbridge L, Aniss A, Wright D, Graf N, Kumar A, Rathi V, Benitez-Aguirre P, Glover AR, Gill AJ (2023) A detailed histologic and molecular assessment of the diffuse sclerosing variant of papillary thyroid carcinoma. Mod Pathol 36:100329. https://doi.org/10.1016/j.modpat.2023.100329

Article  PubMed  Google Scholar 

Thompson LD, Wieneke JA, Heffess CS (2005) Diffuse sclerosing variant of papillary thyroid carcinoma: a clinicopathologic and immunophenotypic analysis of 22 cases. Endocr Pathol 16:331–348. https://doi.org/10.1385/ep:16:4:331

Article  PubMed  Google Scholar 

Carcangiu ML, Bianchi S (1989) Diffuse sclerosing variant of papillary thyroid carcinoma Clinicopathologic study of 15 cases. Am J Surg Pathol 13:1041–1049. https://doi.org/10.1097/00000478-198912000-00006

Article  CAS  PubMed  Google Scholar 

Chan JK, Tsui MS, Tse CH (1987) Diffuse sclerosing variant of papillary carcinoma of the thyroid: a histological and immunohistochemical study of three cases. Histopathology 11:191–201. https://doi.org/10.1111/j.1365-2559.1987.tb02622.x

Article  CAS  PubMed  Google Scholar 

Das DK (2009) Psammoma body: a product of dystrophic calcification or of a biologically active process that aims at limiting the growth and spread of tumor? Diagn Cytopathol 37:534–541. https://doi.org/10.1002/dc.21081

Article  PubMed  Google Scholar 

Okubo Y, Toda S, Sato S, Yoshioka E, Ono K, Hasegawa C, Washimi K, Yokose T, Miyagi Y, Iwasaki H, Hayashi H (2023) Histological findings of thyroid cancer after lenvatinib therapy. Histopathology 83:657–663. https://doi.org/10.1111/his.15013

Article  PubMed  Google Scholar 

Zhang L, Feng Q, Wang J, Tan Z, Li Q, Ge M (2023) Molecular basis and targeted therapy in thyroid cancer: progress and opportunities Biochim Biophys Acta Rev. Cancer 1878:188928. https://doi.org/10.1016/j.bbcan.2023.188928

Article  CAS  Google Scholar 

Miller KC, Chintakuntlawar AV (2021) Molecular-driven therapy in advanced thyroid cancer. Curr Treat Options Oncol 22:24. https://doi.org/10.1007/s11864-021-00822-7

Article  PubMed  Google Scholar 

Hamidi S, Hofmann MC, Iyer PC, Cabanillas ME, Hu MI, Busaidy NL, Dadu R (2023) Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance Front Endocrinol (Lausanne) 14:1176731. https://doi.org/10.3389/fendo.2023.1176731

Article  PubMed  Google Scholar 

Toda S, Iwasaki H, Okubo Y, Hayashi H, Kadoya M, Takahashi H, Yokose T, Hiroshima Y, Masudo K (2023). The frequency of mutations in advanced thyroid cancer in Japan: a single-center study Endocr J. https://doi.org/10.1507/endocrj.EJ23-0342

Article  PubMed  Google Scholar 

Marchetti A, Ferro B, Pasciuto MP, Zampacorta C, Buttitta F, D'Angelo E (2022) NTRK gene fusions in solid tumors: agnostic relevance, prevalence and diagnostic strategies Pathologica 114:199–216. https://doi.org/10.32074/1591-951X-787

Chu YH, Sadow PM (2021) Kinase fusion-related thyroid carcinomas: distinct pathologic entities with evolving diagnostic implications Diagn Histopathol (Oxf) 27:252–262. https://doi.org/10.1016/j.mpdhp.2021.03.003

Article  PubMed  Google Scholar 

Khan TM, Zeiger MA (2020) Thyroid nodule molecular testing: is it ready for prime time? Front Endocrinol (Lausanne) 11:590128. https://doi.org/10.3389/fendo.2020.590128

Article  PubMed  Google Scholar 

Roth MY, Witt RL, Steward DL (2018) Molecular testing for thyroid nodules: review and current state. Cancer 124:888–898. https://doi.org/10.1002/cncr.30708

Article  PubMed  Google Scholar 

McMurtry V, Canberk S, Deftereos G (2023) Molecular testing in fine-needle aspiration of thyroid nodules. Diagn Cytopathol 51:36–50. https://doi.org/10.1002/dc.25035

Article  PubMed  Google Scholar 

Ontario H (2022) Molecular testing for thyroid nodules of indeterminate cytology: a health technology assessment Ont Health Technol Assess Ser 22:1–111

Google Scholar 

Shi M, Wang W, Zhang J, Li B, Lv D, Wang D, Wang S, Cheng D, Ma T (2022) Identification of RET fusions in a Chinese multicancer retrospective analysis by next-generation sequencing. Cancer Sci 113:308–318. https://doi.org/10.1111/cas.15181

Article  CAS  PubMed  Google Scholar 

Hescheler DA, Riemann B, Hartmann MJM, Michel M, Faust M, Bruns CJ, Alakus H, Chiapponi C (2021) Targeted therapy of papillary thyroid cancer: a comprehensive genomic analysis Front Endocrinol (Lausanne) 12:748941. https://doi.org/10.3389/fendo.2021.748941

Article  PubMed  Google Scholar 

Parimi V, Tolba K, Danziger N, Kuang Z, Sun D, Lin DI, Hiemenz MC, Schrock AB, Ross JS, Oxnard GR, Huang RSP (2023) Genomic landscape of 891 RET fusions detected across diverse solid tumor types NPJ Precis Oncol 7:10. https://doi.org/10.1038/s41698-023-00347-2

Bulanova Pekova B, Sykorova V, Mastnikova K, Vaclavikova E, Moravcova J, Vlcek P, Lancova L, Lastuvka P, Katra R, Bavor P, Kodetova D, Chovanec M, Drozenova J, Matej R, Astl J, Hlozek J, Hrabal P, Vcelak J, Bendlova B (2023) RET fusion genes in pediatric and adult thyroid carcinomas: cohort characteristics and prognosis Endocr Relat Cancer 30. https://doi.org/10.1530/ERC-23-0117

Pekova B, Sykorova V, Mastnikova K, Vaclavikova E, Moravcova J, Vlcek P, Lastuvka P, Taudy M, Katra R, Bavor P, Kodetova D, Chovanec M, Drozenova J, Astl J, Hrabal P, Vcelak J, Bendlova B (2021) NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis Cancers (Basel) 13. https://doi.org/10.3390/cancers13081932

Koehler VF, Achterfeld J, Sandner N, Koch C, Wiegmann JP, Ivanyi P, Kasmann L, Pusch R, Wolf D, Chirica M, Knosel T, Demes MC, Kumbrink J, Vogl TJ, Meyer G, Spitzweg C, Bojunga J, Kroiss M (2023) NTRK fusion events and targeted treatment of advanced radioiodine refractory thyroid cancer. J Cancer Res Clin Oncol 149:14035–14043. https://doi.org/10.1007/s00432-023-05134-x

Article  CAS  PubMed Central  PubMed  Google Scholar 

Rosen EY, Goldman DA, Hechtman JF, Benayed R, Schram AM, Cocco E, Shifman S, Gong Y, Kundra R, Solomon JP, Bardelli A, Scaltriti M, Drilon A, Iasonos A, Taylor BS, Hyman DM (2020) TRK fusions are enriched in cancers with uncommon histologies and the absence of canonical driver mutations. Clin Cancer Res 26:1624–1632. https://doi.org/10.1158/1078-0432.CCR-19-3165

Article  CAS  PubMed  Google Scholar 

Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, Jungbluth AA, Zehir A, Benayed R, Drilon A, Hyman DM, Ladanyi M, Sireci AN, Hechtman JF (2020) NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls Mod Pathol 33:38–46. https://doi.org/10.1038/s41379-019-0324-7

Solomon JP, Hechtman JF (2019) Detection of NTRK fusions: merits and limitations of current diagnostic platforms. Cancer Res 79:3163–3168. https://doi.org/10.1158/0008-5472.CAN-19-0372

Article  CAS  PubMed Central  PubMed  Google Scholar 

Chou A, Fraser S, Toon CW, Clarkson A, Sioson L, Farzin M, Cussigh C, Aniss A, O’Neill C, Watson N, Clifton-Bligh RJ, Learoyd DL, Robinson BG, Selinger CI, Delbridge LW, Sidhu SB, O’Toole SA, Sywak M, Gill AJ (2015) A detailed clinicopathologic study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol 39:652–659. https://doi.org/10.1097/PAS.0000000000000368

Article  PubMed Central  PubMed  Google Scholar 

Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, Schultz N, Berger MF, Sander C, Taylor BS, Ghossein R, Ganly I, Fagin JA (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126:1052–1066. https://doi.org/10.1172/JCI85271

Article  PubMed Central  PubMed  Google Scholar 

Cancer Genome Atlas Research N (2014) Integrated genomic characterization of papillary thyroid carcinoma Cell 159:676–690. https://doi.org/10.1016/j.cell.2014.09.050

Pekova B, Sykorova V, Dvorakova S, Vaclavikova E, Moravcova J, Katra R, Astl J, Vlcek P, Kodetova D, Vcelak J, Bendlova B (2020) RET, NTRK, ALK, BRAF, and MET Fusions in a large cohort of pediatric papillary thyroid carcinomas Thyroid 30:1771–1780. https://doi.org/10.1089/thy.2019.0802

Turchini J, Sioson L, Clarkson A, Sheen A, Delbridge L, Glover A, Sywak M, Sidhu S, Gill AJ (2023) The presence of typical “BRAFV600E-Like” atypia in papillary thyroid carcinoma is highly specific for the presence of the BRAFV600E mutation Endocr Pathol 34:112–118. https://doi.org/10.1007/s12022-022-09747-9

Antonescu CR, Dickson BC, Swanson D, Zhang L, Sung YS, Kao YC, Chang WC, Ran L, Pappo A, Bahrami A, Chi P, Fletcher CD (2019) Spindle cell tumors with RET gene fusions exhibit a morphologic spectrum akin to tumors with NTRK gene fusions. Am J Surg Pathol 43:1384–1391. https://doi.org/10.1097/PAS.0000000000001297

Article  PubMed Central  PubMed  Google Scholar 

Ullmann TM, Thiesmeyer JW, Lee YJ, Beg S, Mosquera JM, Elemento O, Fahey TJ 3rd, Scognamiglio T, Houvras Y (2022). RET fusion-positive papillary thyroid cancers are associated with a more aggressive phenotype Ann Surg Oncol. https://doi.org/10.1245/s10434-022-11418-2

Article  PubMed 

Comments (0)

No login
gif