Hoffman GS (2016) Giant cell arteritis. Ann Intern Med 165:ITC65–ITC80
Stone JR, Bruneval P, Angelini A, Bartoloni G, Basso C, Batoroeva L, Buja LM, Butany J, d’Amati G, Fallon JT, Gittenberger-de Groot AC, Gouveia RH, Halushka MK, Kelly KL, Kholova I, Leone O, Litovsky SH, Maleszewski JJ, Miller DV, Mitchell RN, Preston SD, Pucci A, Radio SJ, Rodriguez ER, Sheppard MN, Suvarna SK, Tan CD, Thiene G, van der Wal AC, Veinot JP (2015) Consensus statement on surgical pathology of the aorta from the society for cardiovascular pathology and the association for European cardiovascular pathology: I. Inflamm Dis Cardiovasc Pathol 24:267–278
Bengtsson BÅ, Malmvall BE (1981) The epidemiology of giant cell arteritis including temporal arteritis and polymyalgia rheumatica. Arthritis Rheum: Official Journal of the American College of Rheumatology 24:899–904
Stamatis P, Turesson C, Michailidou D, Mohammad AJ (2022) Pathogenesis of giant cell arteritis with focus on cellular populations. Front Med 9:1058600
Weyand CM, Schönberger J, Oppitz U, Hunder NN, Hicok KC, Goronzy JJ (1994) Distinct vascular lesions in giant cell arteritis share identical T cell clonotypes. J Exp Med 179:951–960
Article CAS PubMed Google Scholar
Banks PM, Cohen MD, Ginsburg WW, Hunder GG (1983) Immunohistologic and cytochemical studies of temporal arteritis. Arthritis Rheum 26:1201–1207
Article CAS PubMed Google Scholar
Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM (2010) Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121:906–915
Article CAS PubMed PubMed Central Google Scholar
Terrier B, Geri G, Chaara W, Allenbach Y, Rosenzwajg M, Costedoat NC, Fouret P, Musset L, Benveniste O, Six A, Klatzmann D, Saadoun D, Cacoub P (2012) Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum 64:2001–2011
Article CAS PubMed Google Scholar
Conway R, O’Neill L, McCarthy GM, Murphy CC, Fabre A, Kennedy S, Veale DJ, Wade SM, Fearon U, Molloy ES (2018) Interleukin 12 and interleukin 23 play key pathogenic roles in inflammatory and proliferative pathways in giant cell arteritis. Ann Rheum Dis 77:1815–1824
Article CAS PubMed Google Scholar
Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–596
Article CAS PubMed Google Scholar
Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669
Article CAS PubMed Google Scholar
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133
Article CAS PubMed Google Scholar
Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061
Article ADS CAS PubMed Google Scholar
Ciccia F, Rizzo A, Guggino G, Cavazza A, Alessandro R, Maugeri R, Cannizzaro A, Boiardi L, Iacopino DG, Salvarani C, Triolo G (2015) Difference in the expression of IL-9 and IL-17 correlates with different histological pattern of vascular wall injury in giant cell arteritis. Rheumatology 54:1596–1604
Article CAS PubMed Google Scholar
Hunder GG, Bloch DA, Michel BA, Stevevs MB, Arend WP, Calabrese LH, Edworthy SM, Faucj AS, Leavitt RY, Lie JT, Lightfoot RW Jr, Masi AT, McShane DJ, Mills JA, Wallace SL, Zvaifler NJ (1990) The American college of rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 33:1122–1128
Article CAS PubMed Google Scholar
Kobayashi M, Matsumoto Y, Satomi H, Tateishi A, Ohya M, Ito I, Kanno H (2020) The ratio of CD163-positive macrophages to Iba1-positive macrophages is low in the intima in the early stage of cutaneous arteritis. Immunol Res 68:152–160. https://doi.org/10.1007/s12026-020-09140-w
Article CAS PubMed Google Scholar
Samson M, Ly KH, Tournier B, Janikashvili N, Trad M, Ciudad M, Gautheron A, Devilliers H, Quipourt V, Maurier F, Meaux-Ruault N, Magy-Bertrand N, Manckoundia P, Ornetti P, Maillefert JF, Besancenot JF, Ferrand C, Mesturoux L, Labrousse F, Fauchais AL, Saas P, Martin L, Audia S, Bonnotte B (2016) Involvement and prognosis value of CD8+ T cells in giant cell arteritis. J Autoimmun 72:73–83
Article CAS PubMed Google Scholar
Kurata A, Saito A, Hashimoto H, Fujita K, Ohno S-I, Kamma H, Nagao T, Kobayashi S, Yamashina A, Kuroda M (2019) Difference in immunohistochemical characteristics between Takayasu arteritis and giant cell arteritis: it may be better to distinguish them in the same age. Mod Rheumatol 29:992–1001
Article CAS PubMed Google Scholar
Friedrich M, Pohin M, Powrie F (2019) Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50:992–1006
Article CAS PubMed Google Scholar
Saadoun D, Garrido M, Comarmond C, Desbois AC, Domont F, Savey L, Terrier B, Geri G, Rosenzwajg M, Klatzmann D, Fourret P, Cluzel P, Chiche L, Gaudric J, Koskas F, Cacoub P (2015) Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol 67:1353–1360
Article CAS PubMed Google Scholar
Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795
Article CAS PubMed PubMed Central Google Scholar
Raffin C, Vo LT, Bluestone JA (2020) Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol 20:158–172
Article CAS PubMed Google Scholar
Esen I, Jiemy WF, van Sleen Y, van der Geest KSM, Sandovici M, Heeringa P, Boots AMH, Brouwer E (2021) Functionally heterogenous macrophage subsets in the pathogenesis of giant cell arteritis: novel targets for disease monitoring and treatment. J Clin Med 10:4958. https://doi.org/10.3390/jcm10214958
Comments (0)