Zhao Y, Mir C, Garcia-Mayea Y, Paciucci R, Kondoh H, Leonart ML. RNA-binding proteins: underestimated contributors in tumorigenesis. Semin Cancer Biol. 2022;86:431–44. https://doi.org/10.1016/j.semcancer.2022.01.010.
Article CAS PubMed Google Scholar
Li W, Deng X, Chen J. RNA-binding proteins in regulating mRNA stability and translation: roles and mechanisms in cancer. Semin Cancer Biol. 2022;86:664–77. https://doi.org/10.1016/j.semcancer.2022.03.025.
Article CAS PubMed Central PubMed Google Scholar
Hashimoto S, Kishimoto T. Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol. 2022;86:310–24. https://doi.org/10.1016/j.semcancer.2022.03.017.
Article CAS PubMed Google Scholar
Dasgupta T, Ladd A. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip Rev RNA. 2012;3:104–21. https://doi.org/10.1002/wrna.107.
Article CAS PubMed Google Scholar
Brimacombe KR, Ladd AN. Cloning and embryonic expression patterns of the chicken CELF family. Dev Dyn. 2007;236:2216–24. https://doi.org/10.1002/dvdy.21209.
Article CAS PubMed Google Scholar
Takahashi N, Sasagawa N, Suzuki K, Ishiura S. The CUG-binding protein binds specifically to UG dinucleotide repeats in a yeast three-hybrid system. Biochem Biophys Res Commun. 2000;277:518–23. https://doi.org/10.1006/bbrc.2000.3694.
Article CAS PubMed Google Scholar
Kajdasz A, Niewiadomska D, Sekrecki M, Sobczak K. Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression. Sci Rep. 2022;12:190. https://doi.org/10.1038/s41598-021-03901-9.
Article ADS CAS PubMed Central PubMed Google Scholar
Khaziapoul S, Pearson M, Pryme I, Stern B, Hesketh J. CUG binding protein 1 binds to a specific region within the human albumin 3’ untranslated region. Biochem Biophys Res Commun. 2012;426:539–43. https://doi.org/10.1016/j.bbrc.2012.08.123.
Article CAS PubMed Google Scholar
Masuda A, Andersen H, Doktor T, Okamoto T, Ito M, Andresen B, Ohno K. CUGBP1 and MBNL1 preferentially bind to 3’ UTRs and facilitate mRNA decay. Sci Rep. 2012;2:209. https://doi.org/10.1038/srep00209.
Article ADS CAS PubMed Central PubMed Google Scholar
Liu K, Peng X, Luo L. miR-322 promotes the differentiation of embryonic stem cells into cardiomyocytes. Funct Integr Genomics. 2023;23:87. https://doi.org/10.1007/s10142-023-01008-0.
Article CAS PubMed Google Scholar
Blech-Hermoni Y, Sullivan C, Jenkins M, Wessely O, Ladd A. CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. Dev Dyn. 2016;245:854–73. https://doi.org/10.1002/dvdy.24413.
Article CAS PubMed Central PubMed Google Scholar
Tahara N, Bessho Y, Matsui T. Celf1 is required for formation of endoderm-derived organs in zebrafish. Int J Mol Sci. 2013;14:18009–23. https://doi.org/10.3390/ijms140918009.
Article PubMed Central PubMed Google Scholar
Cardani R, Bugiardini E, Renna L, Rossi G, Colombo G, Valaperta R, Novelli G, Botta A, Meola G. Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2. PLoS ONE. 2013;8: e83777. https://doi.org/10.1371/journal.pone.0083777.
Article ADS CAS PubMed Central PubMed Google Scholar
Hu X, Wu P, Liu B, Lang Y, Li T. RNA-binding protein CELF1 promotes cardiac hypertrophy via interaction with PEBP1 in cardiomyocytes. Cell Tissue Res. 2022;387:111–21. https://doi.org/10.1007/s00441-021-03541-5.
Article CAS PubMed Google Scholar
Blech-Hermoni Y, Stillwagon S, Ladd A. Diversity and conservation of CELF1 and CELF2 RNA and protein expression patterns during embryonic development. Dev Dyn. 2013;242:767–77. https://doi.org/10.1002/dvdy.23959.
Article CAS PubMed Central PubMed Google Scholar
Edwards J, Long J, de Moor C, Emsley J, Searle M. Structural insights into the targeting of mRNA GU-rich elements by the three RRMs of CELF1. Nucleic Acids Res. 2013;41:7153–66. https://doi.org/10.1093/nar/gkt470.
Article CAS PubMed Central PubMed Google Scholar
Edwards J, Malaurie E, Kondrashov A, Long J, de Moor C, Searle M, Emsley J. Sequence determinants for the tandem recognition of UGU and CUG rich RNA elements by the two N–terminal RRMs of CELF1. Nucleic Acids Res. 2011;39:8638–50. https://doi.org/10.1093/nar/gkr510.
Article CAS PubMed Central PubMed Google Scholar
Teplova M, Song J, Gaw HY, Teplov A, Patel DJ. Structural insights into RNA recognition by the alternate-splicing regulator CUG-binding protein 1. Structure. 2010;18:1364–77. https://doi.org/10.1016/j.str.2010.06.018.
Article CAS PubMed Central PubMed Google Scholar
Barreau C, Paillard L, Méreau A, Osborne H. Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions. Biochimie. 2006;88:515–25. https://doi.org/10.1016/j.biochi.2005.10.011.
Article CAS PubMed Google Scholar
Beisang D, Rattenbacher B, Vlasova-St. Louis IA, Bohjanen PR. Regulation of CUG-binding Protein 1 (CUGBP1) binding to target transcripts upon T cell activation. J Biol Chem. 2012;287:950–60. https://doi.org/10.1074/jbc.M111.291658.
Article CAS PubMed Google Scholar
Kress C, Gautier-Courteille C, Osborne H, Babinet C, Paillard L. Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice. Mol Cell Biol. 2007;27:1146–57. https://doi.org/10.1128/mcb.01009-06.
Article CAS PubMed Google Scholar
Diana B, Maike C, Tomas P. A novel role for Celf1 in vegetal RNA localization during Xenopus oogenesis. Dev Biol. 2015;405:214–24. https://doi.org/10.1016/j.ydbio.2015.07.005.
Suzuki H, Maegawa S, Nishibu T, Sugiyama T, Yasuda K, Inoue K. Vegetal localization of the maternal mRNA encoding an EDEN-BP/Bruno-like protein in zebrafish. Mech Dev. 2000;93:205–9. https://doi.org/10.1016/s0925-4773(00)00270-7.
Article CAS PubMed Google Scholar
Ladd AN, Taffet G, Hartley C, Kearney DL, Cooper TA. Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol Cell Biol. 2005;25:6267–78. https://doi.org/10.1128/MCB.25.14.6267-6278.2005.
Article CAS PubMed Central PubMed Google Scholar
Timchenko N, Patel R, Iakova P, Cai Z, Quan L, Timchenko L. Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. J Biol Chem. 2004;279:13129–39. https://doi.org/10.1074/jbc.M312923200.
Article CAS PubMed Google Scholar
Blech-Hermoni Y, Sullivan CB, Jenkins MW, Wessely O. CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. Dev Dyn. 2016;245:854–73. https://doi.org/10.1002/dvdy.24413.
Article CAS PubMed Central PubMed Google Scholar
Chang K, Wang L, Lin Y, Cheng C, Wang G. CELF1 promotes vascular endothelial growth factor degradation resulting in impaired microvasculature in heart failure. FASEB J. 2021;35: e21512. https://doi.org/10.1096/fj.202002553R.
Article CAS PubMed Google Scholar
Ozimski L, Sabater-Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol Rev Camb Philos Soc. 2021;96:716–30. https://doi.org/10.1111/brv.12674.
Article CAS PubMed Google Scholar
Lee J, Cooper T. Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans. 2009;37:1281–6. https://doi.org/10.1042/bst0371281.
Article CAS PubMed Google Scholar
D’Ambrosio E, Gonzalez-Perez P. Cancer and myotonic dystrophy. J Clin Med. 2023;12:1939. https://doi.org/10.3390/jcm12051939.
Article CAS PubMed Central PubMed Google Scholar
Costa A, Cruz A, Martins F, Rebelo S. Protein phosphorylation alterations in myotonic dystrophy type 1: a systematic review. Int J Mol Sci. 2023;24:3091. https://doi.org/10.3390/ijms24043091.
Comments (0)