Takakura, A. et al. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 10, 3040 (2019).
Ruoff, R. S. & Lorents, D. C. Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995).
Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Physics of carbon nanotubes. Carbon 33, 883–891 (1995).
Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).
Frank, S., Poncharal, P., Wang, Z. L. & Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).
Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).
O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).
Yakobson, B. I. & Couchman, L. S. Persistence length and nanomechanics of random bundles of nanotubes. J. Nanopart. Res. 8, 105–110 (2006).
Chen, J. S. et al. Room temperature lasing from semiconducting single-walled carbon nanotubes. ACS Nano 16, 16776–16783 (2022).
Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R. & Ajayan, P. M. Carbon nanotube filters. Nat. Mater. 3, 610–614 (2004).
Galassi, T. V. et al. An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Sci. Transl. Med. 10, eaar2680 (2018).
Kim, M. et al. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01364-9 (2023).
Kim, M. et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Biomed. Eng. 6, 267–275 (2022).
Tan, J. M., Bullo, S., Fakurazi, S. & Hussein, M. Z. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Sci. Rep. 10, 16941 (2020).
Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).
Safaee, M. M., Gravely, M. & Roxbury, D. A wearable optical microfibrous biomaterial with encapsulated nanosensors enables wireless monitoring of oxidative stress. Adv. Funct. Mater. 31, 2006254 (2021).
Xu, S., Liu, J. & Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 76, 16–23 (2015).
Maheswaran, R. & Shanmugavel, B. P. A critical review of the role of carbon nanotubes in the progress of next-generation electronic applications. J. Electron. Mater. 51, 2786–2800 (2022).
Choi, C. et al. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16, 7677–7684 (2016).
Global carbon nanotubes market size by type (SWCNT, MWCNT), by application (plastics & composites, electrical & electronics, energy), by geographic scope and forecast. Verified Market Research Report 32499 (Verified Market Research, 2022).
Zeng, L. & Attwood, J. Advanced Materials Primer: Carbon Nanotubes (BloombergNEF, 2021).
Valsami-Jones, E. & Lynch, I. How safe are nanomaterials? Science 350, 388–389 (2015).
Heller, D. A. et al. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 15, 164–166 (2020).
Hansen, S. F. & Lennquist, A. SIN List criticism based on misunderstandings. Nat. Nanotechnol. 15, 418–418 (2020).
Hansen, S. F. & Lennquist, A. Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern. Nat. Nanotechnol. 15, 3–4 (2020).
Fadeel, B. & Kostarelos, K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat. Nanotechnol. 15, 164–164 (2020).
Castillo, A. P. D. & Krop, H. EU observatory for nanomaterials: A constructive view on future regulation. European Trade Union Institute (ETUI) Research Paper - Policy Brief 4/2017 (ETUI, 2018).
National Institute for Occupational Safety and Health (NIOSH). Occupational exposure to carbon nanotubes and nanofibers. Curr. Intell. Bull. 65 (2013).
Realizing the promise of carbon nanotubes: challenges, opportunities, and the pathway to commercialization. Technical Interchange Proceedings (National Nanotechnology Initiative, 2014).
US Environmental Protection Agency (US EPA).Multi-walled carbon nanotubes; significant new use rule. Fed. Reg. 76, 26186–26192 (2011).
US Environmental Protection Agency (US EPA). Significant new use rule on certain chemical substances. Fed. Reg. 82, 45990–45995 (2017).
US Environmental Protection Agency (US EPA). Toxic substances control act inventory status of carbon nanotubes. Fed. Reg. 73, 64946–64947 (2008).
Castagnola, V. et al. Towards a classification strategy for complex nanostructures. Nanoscale Horiz. 2, 187–198 (2017).
He, M. et al. Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse. ACS Nano 8, 9657–9663 (2014).
Zhao, X. et al. Smallest carbon nanotube is 3 A in diameter. Phys. Rev. Lett. 92, 125502 (2004).
Balasubramanian, K. & Burghard, M. Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005).
Kalbac, M., Green, A. A., Hersam, M. C. & Kavan, L. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type. Chemistry 17, 9806–9815 (2011).
Moore, K. E., Tune, D. D. & Flavel, B. S. Double-walled carbon nanotube processing. Adv. Mater. 27, 3105–3137 (2015).
Shi, W. et al. Superconductivity in bundles of double-wall carbon nanotubes. Sci. Rep. 2, 625 (2012).
Noffsinger, J. & Cohen, M. L. Electron-phonon coupling and superconductivity in double-walled carbon nanotubes. Phys. Rev. B 83, 165420 (2011).
Hecht, D., Hu, L. & Grüner, G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006).
Harrah, D. M. & Swan, A. K. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes. ACS Nano 5, 647–655 (2011).
Zhang, R., Zhang, Y. & Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc. Chem. Res. 50, 179–189 (2017).
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
Scott, C. D., Arepalli, S., Nikolaev, P. & Smalley, R. E. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 72, 573–580 (2001).
Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).
Lolli, G. et al. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 110, 2108–2115 (2006).
Saito, T. et al. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J. Nanosci. Nanotechnol. 8, 6153–6157 (2008).
Graf, A. et al. Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016).
Pénicaud, A., Poulin, P., Derré, A., Anglaret, E. & Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).
Ramesh, S. et al. Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108, 8794–8798 (2004).
Li, Y.-L., Kinloch, I. A. & Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276–278 (2004).
Headrick, R. J. et al. Versatile acid solvents for pristine carbon nanotube assembly. Sci. Adv. 8, eabm3285 (2022).
Comments (0)