Ethawi YH, Abou Mehrem A, Minski J, Ruth CA, Davis PG. High-frequency jet ventilation versus high-frequency oscillatory ventilation for pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2016;2016:CD010548.
PubMed PubMed Central Google Scholar
Musk GC, Polglase GR, Bunnell JB, McLean CJ, Nitsos I, Song Y, et al. High positive end-expiratory pressure during high-frequency jet ventilation improves oxygenation and ventilation in preterm lambs. Pediatr Res. 2011;69:319–24.
Musk GC, Polglase GR, Song Y, Pillow JJ. Impact of conventional breath inspiratory time during high-frequency jet ventilation in preterm lambs. Neonatology. 2012;101:267–73.
Brown MK, Poeltler DM, Hassen KO, Lazarus DV, Brown VK, Stout JJ, et al. Incidence of hypocapnia, hypercapnia, and acidosis and the associated risk of adverse events in preterm neonates. Respir Care. 2018;63:943–9.
Zhou W, Liu W. Hypercapnia and hypocapnia in neonates. World J Pediatr. 2008;4:192–6.
Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 2017;10:CD003666.
Enomoto M, Keszler M, Sakuma M, Kikuchi S, Katayama Y, Takei A, et al. Effect of volume guarantee in preterm infants on high-frequency oscillatory ventilation: a pilot study. Am J Perinatol. 2017;34:26–30.
DiBlasi RM, Kearney CN, Hotz JC, Salyer JW, Poli JA, Crotwell DN, et al. Physiologic effects of 3 different neonatal volume-targeted ventilation modes in surfactant-deficient juvenile rabbits. Respir Care. 2019;64:361–71.
van Genderingen HR, van Vught AJ, Jansen JR. Estimation of regional lung volume changes by electrical impedance pressures tomography during a pressure-volume maneuver. Intensive Care Med. 2003;29:233–40.
Hinz J, Hahn G, Neumann P, Sydow M, Mohrenweiser P, Hellige G, et al. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med. 2003;29:37–43.
Article CAS PubMed Google Scholar
Katalan S, Falach R, Rosner A, Goldvaser M, Brosh-Nissimov T, Dvir A, et al. A novel swine model of ricin-induced acute respiratory distress syndrome. Dis Model Mech. 2017;10:173–83.
CAS PubMed PubMed Central Google Scholar
Kopincova J, Mikolka P, Kolomaznik M, Kosutova P, Calkovska A, Mokra D. Selective inhibition of NF-kappaB and surfactant therapy in experimental meconium-induced lung injury. Physiol Res. 2017;66:S227–S236.
Article CAS PubMed Google Scholar
Notter RH, Egan EA, Kwong MS, Holm BA, Shapiro DL. Lung surfactant replacement in premature lambs with extracted lipids from bovine lung lavage: effects of dose, dispersion technique, and gestational age. Pediatr Res. 1985;19:569–77.
Article CAS PubMed Google Scholar
Riedel T, Kyburz M, Latzin P, Thamrin C, Frey U. Regional and overall ventilation inhomogeneities in preterm and term-born infants. Intensive Care Med. 2009;35:144–51.
Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB. Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg. 2012;93:1331–9.
DiBlasi RM, Micheletti KJ, Zimmerman JD, Poli JA, Fink JB, Kajimoto M. Physiologic effects of instilled and aerosolized surfactant using a breath-synchronized nebulizer on surfactant-deficient rabbits. Pharmaceutics. 2021;13:1580.
Article PubMed PubMed Central Google Scholar
Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295:L379–399.
Article CAS PubMed PubMed Central Google Scholar
Kamaruzaman NA, Kardia E, Kamaldin N, Latahir AZ, Yahaya BH. The rabbit as a model for studying lung disease and stem cell therapy. Biomed Res Int. 2013;2013:691830.
Comments (0)