Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review

Gadzama AA, Nyandaiti Y, Mshelia DS. Role of a diagnostic laboratory in the management of diabetes mellitus. Niger J Clin Pract. 2008;11(1):68–72.

Google Scholar 

Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus. Handb Clin Neurol. 2014;1(126):211–22. https://doi.org/10.1016/B978-0-444-53480-4.00015-1.

Article  Google Scholar 

DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22. https://doi.org/10.1038/nrdp.2015.19.

Article  Google Scholar 

Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–90. https://doi.org/10.1038/s41581-020-0278-5.

Article  PubMed  PubMed Central  Google Scholar 

Ranasinghe P, Jayawardena R, Gamage N, Sivanandam N, Misra A. Prevalence and trends of the diabetes epidemic in urban and rural India: A pooled systematic review and meta-analysis of 1.7 million adults. Ann Epidemiol. 2021;1(58):128–48. https://doi.org/10.1016/j.annepidem.2021.02.016.

Article  Google Scholar 

Wang ZQ, Jing LL, Yan JC, Sun Z, Bao ZY, Shao C, Pang QW, Geng Y, Zhang LL, Li LH. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018;35(5):443–50. https://doi.org/10.1007/s10719-018-9831-x.

Article  CAS  PubMed  Google Scholar 

Ramachandran S, Vinitha A, Kartha CC. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus. Cardiovasc Diabetol. 2016;15(1):1–9. https://doi.org/10.1186/s12933-016-0467-5.

Article  CAS  Google Scholar 

Chia CW, Egan JM, Ferrucci L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ Res. 2018;123(7):886–904. https://doi.org/10.1161/CIRCRESAHA.118.312806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paneni F, Costantino S, Cosentino F. Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep. 2014;16(7):1–8. https://doi.org/10.1007/s11883-014-0419-z.

Article  CAS  Google Scholar 

Cho YR, Ann SH, Won KB, Park GM, Kim YG, Yang DH, Kang JW, Lim TH, Kim HK, Choe J, Lee SW. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes. Sci Rep. 2019;9(1):1–7. https://doi.org/10.1038/s41598-019-42700-1.

Article  CAS  Google Scholar 

Di Pino A, DeFronzo RA. Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev. 2019;40(6):1447–67. https://doi.org/10.1210/er.2018-00141.

Article  PubMed  PubMed Central  Google Scholar 

Evans JL, Balkan B, Chuang E, Rushakoff RJ. Oral and injectable (non-insulin) pharmacological agents or type 2 diabetes. Endotext. South Dartmouth (MA). 2000. https://www.researchgate.net/publication/305487888

Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α- glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem. 2019;1(86):305–15. https://doi.org/10.1016/j.bioorg.2019.02.009.

Article  CAS  Google Scholar 

Campbell RK, White JR Jr, Saulie BA. Metformin: a new oral biguanide. Clin Ther. 1996;18(3):360–71. https://doi.org/10.1016/S0149-2918(96)80017-8.

Article  CAS  PubMed  Google Scholar 

Zhang F, Lavan BE, Gregoire FM. Selective modulators of PPAR-γ activity: molecular aspects related to obesity and side-effects. PPAR Res. 2007;2007. https://doi.org/10.1155/2007/32696.

Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol. 2011;55(1–3):10–6. https://doi.org/10.1016/j.vph.2011.05.001.

Article  CAS  PubMed  Google Scholar 

Harsch IA, Kaestner RH, Konturek PC. Hypoglycemic side effects of sulfonylureas and repaglinide in ageing patients-knowledge and self-management. J Physiol Pharmacol. 2018;69(4):647–9. https://doi.org/10.26402/jpp.2018.4.15.

Article  CAS  Google Scholar 

Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res. 2022;177:106114. https://doi.org/10.1016/j.phrs.2022.106114.

Article  CAS  PubMed  Google Scholar 

Sharma A, Virmani T, Sharma A, Chhabra V, Kumar G, Pathak K, Alhalmi A. Potential effect of DPP-4 inhibitors towards hepatic diseases and associated glucose intolerance. Diabetes Metab Syndr Obes: Targets Ther. 2022;1:1845–64. https://doi.org/10.2147/DMSO.S369712.

Article  Google Scholar 

Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013. https://doi.org/10.1155/2013/627375.

Sharma P, Hajam YA, Kumar R, Rai S. Complementary and alternative medicine for the treatment of diabetes and associated complications: A review on therapeutic role of polyphenols. Phytomedicine Plus. 2022;2(1):100188. https://doi.org/10.1016/j.phyplu.2021.100188.

Article  Google Scholar 

Belščak-Cvitanović A, Durgo K, Huđek A, Bačun-Družina V, Komes D. Overview of polyphenols and their properties. In: Polyphenols: Properties, recovery, and applications. Woodhead Publishing; 2018. p. 3–44. https://doi.org/10.1016/B978-0-12-813572-3.00001-4.

Zhou BO, Wu LM, Yang LI, Liu ZL. Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radic Biol Med. 2005;38(1):78–84. https://doi.org/10.1016/j.freeradbiomed.2004.09.023.

Article  CAS  PubMed  Google Scholar 

Dominguez Avila JA, Rodrigo Garcia J, Gonzalez Aguilar GA, De la Rosa LA. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules. 2017;22(6):903. https://doi.org/10.3390/molecules22060903.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edirisinghe I, Burton-Freeman B. Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. J Berry Res. 2016;6(2):237–50. https://doi.org/10.3233/JBR-160137.

Article  Google Scholar 

Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol. 2018;152:11–20. https://doi.org/10.1016/j.bcp.2018.03.011.

Article  CAS  PubMed  Google Scholar 

Chen L, Pu Y, Xu Y, He X, Cao J, Ma Y, Jiang W. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Res Int. 2022;157:111202. https://doi.org/10.1016/j.foodres.2022.111202.

Article  CAS  PubMed  Google Scholar 

Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO. Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med Cell Longev. 2015;2015:340520. https://doi.org/10.1155/2015/340520.

Article  PubMed  PubMed Central  Google Scholar 

Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006;60(3):308–14. https://doi.org/10.1111/j.1368-5031.2006.00825.x.

Article  CAS  PubMed  Google Scholar 

Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):111–3. https://doi.org/10.1016/j.jsps.2015.03.013.

Article  Google Scholar 

Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radical Biol Med. 2006;40(2):183–92. https://doi.org/10.1016/j.freeradbiomed.2005.06.018.

Article  CAS  Google Scholar 

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm J. 2016;24(5):547–53. https://doi.org/10.1016/j.jsps.2015.03.013.

Article  PubMed  Google Scholar 

Agresti A, Lupo R, Bianchi ME, Müller S. HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun. 2003;302(2):421–6. https://doi.org/10.1016/S0006-291X(03)00184-0.

Article  CAS  PubMed  Google Scholar 

Domingueti CP, Dusse LM, das Graças Carvalho M, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30(4):738–45. https://doi.org/10.1016/j.jdiacomp.2015.12.018.

Article  PubMed  Google Scholar 

Siti HN, Kamisah Y, Kamsiah JJ. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol. 2015;1(71):40–56. https://doi.org/10.1016/j.vph.2015.03.005.

Article  CAS  Google Scholar 

Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, Lee BJ, Perkins RM, Rossing P, Sairenchi T, Tonelli M. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. The Lancet. 2012;380(9854):1662–73. https://doi.org/10.1016/S0140-6736(12)61350-6.

Article  Google Scholar 

Aryaeian N, Sedehi SK, Arablou T. Polyphenols and their effects on diabetes management: A review. Med J Islam Republic Iran. 2017;31:134. https://doi.org/10.14196/mjiri.31.134.

Article  Google Scholar 

Dragan S, Andrica F, Serban MC, Timar R. Polyphenols-rich natural products for treatment of diabetes. Curr Med Chem. 2015;22(1):14–22. https://doi.org/10.2174/0929867321666140826115422.

Article  CAS  PubMed  Google Scholar 

Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules. 2016;21(6):708. https://doi.org/10.3390/molecules21060708.

Article 

Comments (0)

No login
gif