Gadzama AA, Nyandaiti Y, Mshelia DS. Role of a diagnostic laboratory in the management of diabetes mellitus. Niger J Clin Pract. 2008;11(1):68–72.
Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus. Handb Clin Neurol. 2014;1(126):211–22. https://doi.org/10.1016/B978-0-444-53480-4.00015-1.
DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22. https://doi.org/10.1038/nrdp.2015.19.
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–90. https://doi.org/10.1038/s41581-020-0278-5.
Article PubMed PubMed Central Google Scholar
Ranasinghe P, Jayawardena R, Gamage N, Sivanandam N, Misra A. Prevalence and trends of the diabetes epidemic in urban and rural India: A pooled systematic review and meta-analysis of 1.7 million adults. Ann Epidemiol. 2021;1(58):128–48. https://doi.org/10.1016/j.annepidem.2021.02.016.
Wang ZQ, Jing LL, Yan JC, Sun Z, Bao ZY, Shao C, Pang QW, Geng Y, Zhang LL, Li LH. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018;35(5):443–50. https://doi.org/10.1007/s10719-018-9831-x.
Article CAS PubMed Google Scholar
Ramachandran S, Vinitha A, Kartha CC. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus. Cardiovasc Diabetol. 2016;15(1):1–9. https://doi.org/10.1186/s12933-016-0467-5.
Chia CW, Egan JM, Ferrucci L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ Res. 2018;123(7):886–904. https://doi.org/10.1161/CIRCRESAHA.118.312806.
Article CAS PubMed PubMed Central Google Scholar
Paneni F, Costantino S, Cosentino F. Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep. 2014;16(7):1–8. https://doi.org/10.1007/s11883-014-0419-z.
Cho YR, Ann SH, Won KB, Park GM, Kim YG, Yang DH, Kang JW, Lim TH, Kim HK, Choe J, Lee SW. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes. Sci Rep. 2019;9(1):1–7. https://doi.org/10.1038/s41598-019-42700-1.
Di Pino A, DeFronzo RA. Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev. 2019;40(6):1447–67. https://doi.org/10.1210/er.2018-00141.
Article PubMed PubMed Central Google Scholar
Evans JL, Balkan B, Chuang E, Rushakoff RJ. Oral and injectable (non-insulin) pharmacological agents or type 2 diabetes. Endotext. South Dartmouth (MA). 2000. https://www.researchgate.net/publication/305487888
Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α- glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem. 2019;1(86):305–15. https://doi.org/10.1016/j.bioorg.2019.02.009.
Campbell RK, White JR Jr, Saulie BA. Metformin: a new oral biguanide. Clin Ther. 1996;18(3):360–71. https://doi.org/10.1016/S0149-2918(96)80017-8.
Article CAS PubMed Google Scholar
Zhang F, Lavan BE, Gregoire FM. Selective modulators of PPAR-γ activity: molecular aspects related to obesity and side-effects. PPAR Res. 2007;2007. https://doi.org/10.1155/2007/32696.
Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol. 2011;55(1–3):10–6. https://doi.org/10.1016/j.vph.2011.05.001.
Article CAS PubMed Google Scholar
Harsch IA, Kaestner RH, Konturek PC. Hypoglycemic side effects of sulfonylureas and repaglinide in ageing patients-knowledge and self-management. J Physiol Pharmacol. 2018;69(4):647–9. https://doi.org/10.26402/jpp.2018.4.15.
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res. 2022;177:106114. https://doi.org/10.1016/j.phrs.2022.106114.
Article CAS PubMed Google Scholar
Sharma A, Virmani T, Sharma A, Chhabra V, Kumar G, Pathak K, Alhalmi A. Potential effect of DPP-4 inhibitors towards hepatic diseases and associated glucose intolerance. Diabetes Metab Syndr Obes: Targets Ther. 2022;1:1845–64. https://doi.org/10.2147/DMSO.S369712.
Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013. https://doi.org/10.1155/2013/627375.
Sharma P, Hajam YA, Kumar R, Rai S. Complementary and alternative medicine for the treatment of diabetes and associated complications: A review on therapeutic role of polyphenols. Phytomedicine Plus. 2022;2(1):100188. https://doi.org/10.1016/j.phyplu.2021.100188.
Belščak-Cvitanović A, Durgo K, Huđek A, Bačun-Družina V, Komes D. Overview of polyphenols and their properties. In: Polyphenols: Properties, recovery, and applications. Woodhead Publishing; 2018. p. 3–44. https://doi.org/10.1016/B978-0-12-813572-3.00001-4.
Zhou BO, Wu LM, Yang LI, Liu ZL. Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radic Biol Med. 2005;38(1):78–84. https://doi.org/10.1016/j.freeradbiomed.2004.09.023.
Article CAS PubMed Google Scholar
Dominguez Avila JA, Rodrigo Garcia J, Gonzalez Aguilar GA, De la Rosa LA. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules. 2017;22(6):903. https://doi.org/10.3390/molecules22060903.
Article CAS PubMed PubMed Central Google Scholar
Edirisinghe I, Burton-Freeman B. Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. J Berry Res. 2016;6(2):237–50. https://doi.org/10.3233/JBR-160137.
Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol. 2018;152:11–20. https://doi.org/10.1016/j.bcp.2018.03.011.
Article CAS PubMed Google Scholar
Chen L, Pu Y, Xu Y, He X, Cao J, Ma Y, Jiang W. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Res Int. 2022;157:111202. https://doi.org/10.1016/j.foodres.2022.111202.
Article CAS PubMed Google Scholar
Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO. Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med Cell Longev. 2015;2015:340520. https://doi.org/10.1155/2015/340520.
Article PubMed PubMed Central Google Scholar
Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006;60(3):308–14. https://doi.org/10.1111/j.1368-5031.2006.00825.x.
Article CAS PubMed Google Scholar
Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):111–3. https://doi.org/10.1016/j.jsps.2015.03.013.
Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radical Biol Med. 2006;40(2):183–92. https://doi.org/10.1016/j.freeradbiomed.2005.06.018.
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm J. 2016;24(5):547–53. https://doi.org/10.1016/j.jsps.2015.03.013.
Agresti A, Lupo R, Bianchi ME, Müller S. HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun. 2003;302(2):421–6. https://doi.org/10.1016/S0006-291X(03)00184-0.
Article CAS PubMed Google Scholar
Domingueti CP, Dusse LM, das Graças Carvalho M, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30(4):738–45. https://doi.org/10.1016/j.jdiacomp.2015.12.018.
Siti HN, Kamisah Y, Kamsiah JJ. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol. 2015;1(71):40–56. https://doi.org/10.1016/j.vph.2015.03.005.
Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, Lee BJ, Perkins RM, Rossing P, Sairenchi T, Tonelli M. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. The Lancet. 2012;380(9854):1662–73. https://doi.org/10.1016/S0140-6736(12)61350-6.
Aryaeian N, Sedehi SK, Arablou T. Polyphenols and their effects on diabetes management: A review. Med J Islam Republic Iran. 2017;31:134. https://doi.org/10.14196/mjiri.31.134.
Dragan S, Andrica F, Serban MC, Timar R. Polyphenols-rich natural products for treatment of diabetes. Curr Med Chem. 2015;22(1):14–22. https://doi.org/10.2174/0929867321666140826115422.
Article CAS PubMed Google Scholar
Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules. 2016;21(6):708. https://doi.org/10.3390/molecules21060708.
Comments (0)