Ozolina N.V., Gurina V.V., Nesterkina I.S., Dudareva L.V., Katyshev A.I., Nurminsky V.N. 2017. Fatty acid composition of total lipids in vacuolar membrane under abiotic stress. Biologicheskie membrany (Rus.). 34 (1), 63–69.
Demin I.N., Naraikina N.V., Tsedendambaev V.D., Moshkov I.E., Trunova T.I. 2011. Integration of the cyanobacterial DesA gene for Δ12-acyl-lipid desaturase improves potato tolerance to paraquat-induced oxidative stress. Russ. J. Plant Physiol. 58 (4), 660–666.
Makarenko S.P., Dudareva L.V., Katyshev A.I., Konyashkina T.A., Nazarova A.V., Rudikova E.G., Sokolova N.A., Chernikova V.V., Konstantinov Y.M. 2011. The effect of low temperatures on fatty acid composition of crops with different cold resistance. Biochem. Moscow Suppl. Series A, Membr. Cell Biol. 5, 64–69.
Zemanova V., Pavlik M., Kyjakova P., Pavlikova D. 2015. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. J. Plant Physiol. 180, 27–34.
Article CAS PubMed Google Scholar
Dat J., Vandenabeele S., Vranjva E., van Montagu M., Inze D., van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779–795.
Article CAS PubMed Google Scholar
He M., Ding N.-Z. 2020. Plant unsaturated fatty acids: Multiple roles in stress response. Front. Plant Sci. 11, 562785.
Article PubMed PubMed Central Google Scholar
Los D.A. 2014. Desaturazy zhirnykh kislot (Desaturases of fatty acids). Moscow: Nauchnyi Mir.
Berestovoy M.A., Pavlenko O.S., Goldenkova-Pavlova I.V. 2020. Plant fatty acid desaturases: Role in the life of plants and biotechnological potential. Biology Bulletin Reviews. 10, 127–139.
Los D.A. 1997. Fatty acid desaturases: Adaptive expression and principles of regulation. Russ. J. Plant Physiol. 44 (4), 458–469.
Naraykina N.V., Pchelkin V.P., Tsydendambaev V.D., Trunova T.I. 2020. Changes in fatty acid composition and in lipid content in potato leaves during cold hardening: The role of Δ12-acyl-lipid desaturase. Russ. J. Plant Physiol. 67 (2), 267–274.
Corpas F.J., del Río L.A., Barroso J.B. 2007. Need of biomarkers of nitrosative stress in plants. Trends in Plant Science. 12, 436–438.
Article CAS PubMed Google Scholar
Gupta K.J., Mur L.A.J., Wany A., Kumari A., Fernie A.R., Ratcliffe R.G. 2020. The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytologist. 225 (3), 1143–1151.
Article CAS PubMed Google Scholar
Gupta K.J., Hancock J.T., Petrivalsky M., Kolbert Z., Lindermayr C., Durner J., Barroso J.B., Palma J.M., Brouquisse R., Wendehenne D., Corpas F. J., Loake G.J. 2020. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytologist. 225 (5), 1828–1834.
Hancock J.T., Veal D. 2021. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. J. Experim. Botany. 72 (3), 819–829.
Viktorova L.V., Maksyutova N.N., Trifonova T.V., Andrianov V.V. 2010. Production of hydrogen peroxide and nitric oxide following introduction of nitrate and nitrite into wheat leaf apoplast. Biochemistry (Moscow). 75 (1), 95–100.
Article CAS PubMed Google Scholar
Nikerova K.M., Galibina N.A. 2017. The influence of nitrate nitrogen on the peroxidase activity in tissues of Betula pendula Roth var. pendula and B. pendula var. carelica (Mercklin). Siberian Journal of Forest Science. 1, 15–24.
Freschi L. 2013. Nitric oxide and phytohormone interactions: Current status and perspectives. Front. Plant Sci. 4, 398.
Article PubMed PubMed Central Google Scholar
Zhigacheva I.V., Burlakova E.B. Misharina T.A., Terenina M.B., Krikunova N.I., Generozova I.P., Shugaev A.G., Fattakhov S.G. 2013. Fatty acid composition of membrane lipids and energy of mitochondria of pea seedlings under water deficit. Russ. J. Plant Physiol. 60 (2), 212−220.
Zhukov A.V. 2018. Very long-chain fatty acids in the composition of plant membrane lipids. Russ. J. Plant Physiol. 65 (6), 784−800.
Popov V.N., Antipina O.V., Pchelkin V.P., Tsydendambayev V.D. 2012. Changes in the content and composition of lipid fatty acids in tobacco leaves and roots during low-temperature hardening. Russ. J. Plant Physiol. 59 (2), 177−182.
Makarenko S.P., Kopenkina T.A., Khotimchenko S.V. 2007. Fatty acid composition of lipids from the vacuolar membranes of the roots of root vegetables. Russ. J. Plant Physiol. 54 (2), 196−201.
Zheng H., Rowland O., Kunst L. 2005. Disruptions of the Arabidopsis Enoil-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell. 17 (5), 1467−1481.
Article CAS PubMed PubMed Central Google Scholar
Roudier F., Gissot L., Beaudoin F., Haslam R., Michaelson L., Marion J., Molino D., Lima A., Bach L., Morin H.,Tellier F., Palauqui J.-C., Bellec Y., Renne C., Miquel M., DaCosta M., Vignard J., Rochat C., Markham J.E., Moreau P., Napier J., Faure J.-D. 2010. Very-long-chain fatty acids involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell. 22 (2), 364−375.
Article CAS PubMed PubMed Central Google Scholar
Petrášek J., Friml J. 2009. Auxin transport routes in plant development. Development. 136 (16), 2675–2688.
Krouk G. 2016. Hormones and nitrate: A two-way connection. Plant Mol. Biol. 91 (6), 599–606.
Article CAS PubMed Google Scholar
Netrusov A.I., Egorova M.A., Zakharchuk L.M., K-olotilova N.N., Kotova I.B., Semenova E.V., Tatarinova N.Yu., Ugolkova N.V., Tsavkelova E.A., Bobkova A.F., Bogdanov A.G., Danilova I.V., Dinareeva T.Yu., Zinchenko V.V., Ismailov A.D., Kurakov A.V., Maksimov V.N., Milko E.S., Nikitina E.P., Ryzhkova E.P., Semenov A.M., Khomyakova D.V., Cherdyntseva T.A., Yudina T.G. 2005. Praktikum po mikrobiologii. (Workshop on microbiological methods). Moscow: Publishing Center “Academy”.
Dobson G., Christie W.W. 2002. Mass spectrometry of fatty acid derivatives. Eur. J. Lipid Sci. Tech. 104, 36–43.
Christie W.W. 1988. Equivalent chain lengths of methyl ester derivatives of fatty acids on gas chromatography: A reappraisal. J. Chromatogr. 447, 305–314.
Wu J., Seliskar D., Gallagher J. 2005. The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. Am. J. Bot. 92 (5), 852–858.
Article CAS PubMed Google Scholar
Nobusawa T., Umeda M. 2012. Very-long-chain fatty acids have an essential role in plastid division by controlling Z-ring formation in Arabidopsis thaliana. Genes Cells. 17 (8), 709–719.
Article CAS PubMed Google Scholar
Dudareva L.V., Rudikovskaya E.G., Lankevich S.V. 2016. Lipid and fatty acid composition of morphogenic and non-morphogenic calluses of wheat Triticum aestivum L. Biologicheskie membrany (Rus.). 33 (2), 133–139.
Comments (0)