Effect of Auxin on Fatty Acid Composition and Activity of Acyl-Lipid Desaturases in Seedlings of Spring Wheat Triticum aestivum L.

Ozolina N.V., Gurina V.V., Nesterkina I.S., Dudareva L.V., Katyshev A.I., Nurminsky V.N. 2017. Fatty acid composition of total lipids in vacuolar membrane under abiotic stress. Biologicheskie membrany (Rus.). 34 (1), 63–69.

Demin I.N., Naraikina N.V., Tsedendambaev V.D., Moshkov I.E., Trunova T.I. 2011. Integration of the cyanobacterial DesA gene for Δ12-acyl-lipid desaturase improves potato tolerance to paraquat-induced oxidative stress. Russ. J. Plant Physiol. 58 (4), 660–666.

Article  CAS  Google Scholar 

Makarenko S.P., Dudareva L.V., Katyshev A.I., Konyashkina T.A., Nazarova A.V., Rudikova E.G., Sokolova N.A., Chernikova V.V., Konstantinov Y.M. 2011. The effect of low temperatures on fatty acid composition of crops with different cold resistance. Biochem. Moscow Suppl. Series A, Membr. Cell Biol. 5, 64–69.

Article  Google Scholar 

Zemanova V., Pavlik M., Kyjakova P., Pavlikova D. 2015. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. J. Plant Physiol. 180, 27–34.

Article  CAS  PubMed  Google Scholar 

Dat J., Vandenabeele S., Vranjva E., van Montagu M., Inze D., van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779–795.

Article  CAS  PubMed  Google Scholar 

He M., Ding N.-Z. 2020. Plant unsaturated fatty acids: Multiple roles in stress response. Front. Plant Sci. 11, 562785.

Article  PubMed  PubMed Central  Google Scholar 

Los D.A. 2014. Desaturazy zhirnykh kislot (Desaturases of fatty acids). Moscow: Nauchnyi Mir.

Berestovoy M.A., Pavlenko O.S., Goldenkova-Pavlova I.V. 2020. Plant fatty acid desaturases: Role in the life of plants and biotechnological potential. Biology Bulletin Reviews. 10, 127–139.

Article  Google Scholar 

Los D.A. 1997. Fatty acid desaturases: Adaptive expression and principles of regulation. Russ. J. Plant Physiol. 44 (4), 458–469.

CAS  Google Scholar 

Naraykina N.V., Pchelkin V.P., Tsydendambaev V.D., Trunova T.I. 2020. Changes in fatty acid composition and in lipid content in potato leaves during cold hardening: The role of Δ12-acyl-lipid desaturase. Russ. J. Plant Physiol. 67 (2), 267–274.

Article  Google Scholar 

Corpas F.J., del Río L.A., Barroso J.B. 2007. Need of biomarkers of nitrosative stress in plants. Trends in Plant Science. 12, 436–438.

Article  CAS  PubMed  Google Scholar 

Gupta K.J., Mur L.A.J., Wany A., Kumari A., Fernie A.R., Ratcliffe R.G. 2020. The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytologist. 225 (3), 1143–1151.

Article  CAS  PubMed  Google Scholar 

Gupta K.J., Hancock J.T., Petrivalsky M., Kolbert Z., Lindermayr C., Durner J., Barroso J.B., Palma J.M., Brouquisse R., Wendehenne D., Corpas F. J., Loake G.J. 2020. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytologist. 225 (5), 1828–1834.

Article  PubMed  Google Scholar 

Hancock J.T., Veal D. 2021. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. J. Experim. Botany. 72 (3), 819–829.

Article  CAS  Google Scholar 

Viktorova L.V., Maksyutova N.N., Trifonova T.V., Andrianov V.V. 2010. Production of hydrogen peroxide and nitric oxide following introduction of nitrate and nitrite into wheat leaf apoplast. Biochemistry (Moscow). 75 (1), 95–100.

Article  CAS  PubMed  Google Scholar 

Nikerova K.M., Galibina N.A. 2017. The influence of nitrate nitrogen on the peroxidase activity in tissues of Betula pendula Roth var. pendula and B. pendula var. carelica (Mercklin). Siberian Journal of Forest Science. 1, 15–24.

Google Scholar 

Freschi L. 2013. Nitric oxide and phytohormone interactions: Current status and perspectives. Front. Plant Sci. 4, 398.

Article  PubMed  PubMed Central  Google Scholar 

Zhigacheva I.V., Burlakova E.B. Misharina T.A., Terenina M.B., Krikunova N.I., Generozova I.P., Shugaev A.G., Fattakhov S.G. 2013. Fatty acid composition of membrane lipids and energy of mitochondria of pea seedlings under water deficit. Russ. J. Plant Physiol. 60 (2), 212−220.

Article  CAS  Google Scholar 

Zhukov A.V. 2018. Very long-chain fatty acids in the composition of plant membrane lipids. Russ. J. Plant Physiol. 65 (6), 784−800.

Article  CAS  Google Scholar 

Popov V.N., Antipina O.V., Pchelkin V.P., Tsydendambayev V.D. 2012. Changes in the content and composition of lipid fatty acids in tobacco leaves and roots during low-temperature hardening. Russ. J. Plant Physiol. 59 (2), 177−182.

Article  CAS  Google Scholar 

Makarenko S.P., Kopenkina T.A., Khotimchenko S.V. 2007. Fatty acid composition of lipids from the vacuolar membranes of the roots of root vegetables. Russ. J. Plant Physiol. 54 (2), 196−201.

Article  CAS  Google Scholar 

Zheng H., Rowland O., Kunst L. 2005. Disruptions of the Arabidopsis Enoil-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell. 17 (5), 1467−1481.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roudier F., Gissot L., Beaudoin F., Haslam R., Michaelson L., Marion J., Molino D., Lima A., Bach L., Morin H.,Tellier F., Palauqui J.-C., Bellec Y., Renne C., Miquel M., DaCosta M., Vignard J., Rochat C., Markham J.E., Moreau P., Napier J., Faure J.-D. 2010. Very-long-chain fatty acids involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell. 22 (2), 364−375.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petrášek J., Friml J. 2009. Auxin transport routes in plant development. Development. 136 (16), 2675–2688.

Article  PubMed  Google Scholar 

Krouk G. 2016. Hormones and nitrate: A two-way connection. Plant Mol. Biol. 91 (6), 599–606.

Article  CAS  PubMed  Google Scholar 

Netrusov A.I., Egorova M.A., Zakharchuk L.M., K-olotilova N.N., Kotova I.B., Semenova E.V., Tatarinova N.Yu., Ugolkova N.V., Tsavkelova E.A., Bobkova A.F., Bogdanov A.G., Danilova I.V., Dinareeva T.Yu., Zinchenko V.V., Ismailov A.D., Kurakov A.V., Maksimov V.N., Milko E.S., Nikitina E.P., Ryzhkova E.P., Semenov A.M., Khomyakova D.V., Cherdyntseva T.A., Yudina T.G. 2005. Praktikum po mikrobiologii. (Workshop on microbiological methods). Moscow: Publishing Center “Academy”.

Dobson G., Christie W.W. 2002. Mass spectrometry of fatty acid derivatives. Eur. J. Lipid Sci. Tech. 104, 36–43.

Google Scholar 

Christie W.W. 1988. Equivalent chain lengths of methyl ester derivatives of fatty acids on gas chromatography: A reappraisal. J. Chromatogr. 447, 305–314.

Article  CAS  Google Scholar 

Wu J., Seliskar D., Gallagher J. 2005. The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. Am. J. Bot. 92 (5), 852–858.

Article  CAS  PubMed  Google Scholar 

Nobusawa T., Umeda M. 2012. Very-long-chain fatty acids have an essential role in plastid division by controlling Z-ring formation in Arabidopsis thaliana. Genes Cells. 17 (8), 709–719.

Article  CAS  PubMed  Google Scholar 

Dudareva L.V., Rudikovskaya E.G., Lankevich S.V. 2016. Lipid and fatty acid composition of morphogenic and non-morphogenic calluses of wheat Triticum aestivum L. Biologicheskie membrany (Rus.). 33 (2), 133–139.

Comments (0)

No login
gif