de Los Ríos la Rosa F, Khoury J, Kissela BM et al (2012) Eligibility for Intravenous Recombinant Tissue-Type Plasminogen Activator Within a Population: The Effect of the European Cooperative Acute Stroke Study (ECASS) III Trial. Stroke 43:1591–1595
Alexandrov AV, Grotta JC (2002) Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator. Neurology 59:862–867
Article CAS PubMed Google Scholar
Leoo T, Lindgren A, Petersson J, von Arbin M (2008) Risk factors and treatment at recurrent stroke onset: results from the Recurrent Stroke Quality and Epidemiology (RESQUE) Study. Cerebrovasc Dis 25:254–260
Article CAS PubMed PubMed Central Google Scholar
Han TS, Gulli G, Fry CH et al (2022) Adverse consequences of immediate thrombolysis-related complications: a multi-centre registry-based cohort study of acute stroke. J Thromb Thrombolysis 53:218–227
Wardlaw JM, Murray V, Berge E et al (2012) Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 379:2364–2372
Article CAS PubMed PubMed Central Google Scholar
Dhanesha N, Patel RB, Doddapattar P et al (2022) PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke. Blood 139:1234–1245
Article CAS PubMed PubMed Central Google Scholar
Yao Y-Y, Wei Z-J, Zhang Y-C et al (2021) Functional Disability After Ischemic Stroke: A Community-Based Cross-Sectional Study in Shanghai China. Front Neurol 12:649088
Article PubMed PubMed Central Google Scholar
del Ser T, Barba R, Morin MM et al (2005) Evolution of cognitive impairment after stroke and risk factors for delayed progression. Stroke 36:2670–2675
Crichton SL, Bray BD, McKevitt C et al (2016) Patient outcomes up to 15 years after stroke: survival, disability, quality of life, cognition and mental health. J Neurol Neurosurg Psychiatry 87:1091–1098
Sun J-H, Tan L, Yu J-T (2014) Post-stroke cognitive impairment: epidemiology, mechanisms and management. Ann Transl Med 2:80
PubMed PubMed Central Google Scholar
Luengo-Fernandez R, Violato M, Candio P, Leal J (2020) Economic burden of stroke across Europe: A population-based cost analysis. Eur Stroke J 5:17–25
Steubing RD, Szepanowski F, David C et al (2022) Platelet depletion does not alter long-term functional outcome after cerebral ischaemia in mice. Brain, Behavior, & Immunity - Health 24:100493
Meyer SFD, De Meyer SF, Langhauser F et al (2022) Thromboinflammation in Brain Ischemia: Recent Updates and Future Perspectives. Stroke 53:1487–1499
Schuhmann MK, Stoll G, Bieber M et al (2020) CD84 Links T Cell and Platelet Activity in Cerebral Thrombo-Inflammation in Acute Stroke. Circ Res 127:1023–1035
Article CAS PubMed PubMed Central Google Scholar
Packham IM, Watson SP, Bicknell R, Egginton S (2014) In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism. PLoS One 9:e107503
Article PubMed PubMed Central Google Scholar
Nording H, Baron L, Haberthür D et al (2021) The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 12(1):3352. https://doi.org/10.1038/s41467-021-23499-w
Planas AM (2018) Role of Immune Cells Migrating to the Ischemic Brain. Stroke 49:2261–2267
De Meyer SF, Denorme F, Langhauser F et al (2016) Thromboinflammation in Stroke Brain Damage. Stroke 47:1165–1172
Cowled P, Fitridge R, Thompson M (2011) Pathophysiology of reperfusion injury. In: Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists [Internet]. Adelaide (AU): University of Adelaide Press
Cochrane CG, Revak SD, Wuepper KD (1973) Activation of Hageman factor in solid and fluid phases. A critical role of kallikrein. J Exp Med 138:1564–1583
Article CAS PubMed PubMed Central Google Scholar
Austinat M, Braeuninger S, Pesquero JB et al (2009) Blockade of Bradykinin Receptor B1 but Not Bradykinin Receptor B2 Provides Protection From Cerebral Infarction and Brain Edema. Stroke 40:285–293
Article CAS PubMed Google Scholar
Göb E, Reymann S, Langhauser F et al (2015) Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Ann Neurol 77:784–803
Langhauser F, Göb E, Kraft P et al (2012) Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation. Blood 120:4082–4092
Article CAS PubMed PubMed Central Google Scholar
Albert-Weißenberger C, Sirén A-L, Kleinschnitz C (2013) Ischemic stroke and traumatic brain injury: The role of the kallikrein–kinin system. Prog Neurobiol 101-102:65–82
Ottaiano TF, Andrade SS, de Oliveira C et al (2017) Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP. Biochimie 135:72–81
Article CAS PubMed PubMed Central Google Scholar
Marcos-Contreras OA, Martinez de Lizarrondo S, Bardou I et al (2016) Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood 128:2423–2434
Article CAS PubMed Google Scholar
Simão F, Ustunkaya T, Clermont AC, Feener EP (2017) Plasma kallikrein mediates brain hemorrhage and edema caused by tissue plasminogen activator therapy in mice after stroke. Blood 129:2280–2290
Article PubMed PubMed Central Google Scholar
Ansari J, Gavins FNE (2021) The impact of thrombo-inflammation on the cerebral microcirculation. Microcirculation 28:e12689
Jackson SP, Darbousset R, Schoenwaelder SM (2019) Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 133:906–918
Article CAS PubMed Google Scholar
Hoque MM, Abdelazim H, Jenkins-Houk C et al (2021) The cerebral microvasculature: Basic and clinical perspectives on stroke and glioma. Microcirculation 28:e12671
Gavins F, Yilmaz G, Granger DN (2007) The evolving paradigm for blood cell-endothelial cell interactions in the cerebral microcirculation. Microcirculation 14:667–681
Article CAS PubMed Google Scholar
Umemura A, Yamada K, Mabe H, Nagai H (1997) Production of platelet-activating factor during focal cerebral ischemia and reperfusion in the rat. J Stroke Cerebrovasc Dis 6:394–397
Article CAS PubMed Google Scholar
EC de B T, de Brito Toscano EC, Silva BC et al (2016) Platelet-activating factor receptor (PAFR) plays a crucial role in experimental global cerebral ischemia and reperfusion. Brain Res Bull 124:55–61
Hayon Y, Dashevsky O, Shai E et al (2012) Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia. Curr Neurovasc Res 9:185–192
Article CAS PubMed Google Scholar
Hayon Y, Dashevsky O, Shai E et al (2013) Platelet lysates stimulate angiogenesis, neurogenesis and neuroprotection after stroke. Thromb Haemost 110:323–330
Article CAS PubMed Google Scholar
Kocovski P, Jiang X, D’Souza C et al (2019) Platelet Depletion is Effective in Ameliorating Anxiety-Like Behavior and Reducing the Pro-Inflammatory Environment in the Hippocampus in Murine Experimental Autoimmune Encephalomyelitis. J Clin Med 8:162
Article CAS PubMed PubMed Central Google Scholar
Schafer AI (2001) Thrombocytosis and thrombocythemia. Blood Rev 15:159–166
Article CAS PubMed Google Scholar
Kanaji S, Fahs SA, Shi Q et al (2012) Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J Thromb Haemost 10:1646–1652
Article CAS PubMed PubMed Central Google Scholar
Savage B, Saldívar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297
Article CAS PubMed Google Scholar
Berndt MC, Shen Y, Dopheide SM et al (2001) The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost 86:178–188
Comments (0)