Adams JC, Mugnaini E (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior Olive. Hear Res 49(1–3):281–298. https://doi.org/10.1016/0378-5955(90)90109-3
Article PubMed CAS Google Scholar
Alvarado JC, Fuentes-Santamaria V, Henkel CK, Brunso-Bechtold JK (2004) Alterations in calretinin immunostaining in the ferret superior olivary complex after cochlear ablation. J Comp Neurol 470(1):63–79. https://doi.org/10.1002/cne.11038
Asp F, Eskilsson G, Berninger E (2011) Horizontal sound localization in children with bilateral cochlear implants: effects of auditory experience and age at implantation. Otol Neurotol 32(4):558–564. https://doi.org/10.1097/MAO.0b013e318218cfbd
Baizer JS (2014) Unique features of the human brainstem and cerebellum. Front Hum Neurosci 8:202. https://doi.org/10.3389/fnhum.2014.00202
Article PubMed PubMed Central Google Scholar
Baizer JS, Broussard DM (2010) Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 518(6):872–895. https://doi.org/10.1002/cne.22250
Article PubMed CAS Google Scholar
Baizer JS, Baker JF, Haas K, Lima R (2007) Neurochemical organization of the nucleus paramedianus dorsalis in the human. Brain Res 1176:45–52. https://doi.org/10.1016/j.brainres.2007.08.017
Article PubMed PubMed Central CAS Google Scholar
Baizer JS, Paolone NA, Witelson SF (2011a) Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 1382:45–56. https://doi.org/10.1016/j.brainres.2011.01.079
Article PubMed CAS Google Scholar
Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F (2011b) Neurochemical and structural organization of the principal nucleus of the inferior Olive in the human. Anat Rec (Hoboken) 294(7):1198–1216. https://doi.org/10.1002/ar.21400
Article PubMed CAS Google Scholar
Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F (2011c) Neurochemical and structural organization of the principal nucleus of the inferior Olive in the human. Anat Rec 294(7):1198–1216. https://doi.org/10.1002/ar.21400
Baizer JS, Weinstock N, Witelson SF, Sherwood CC, Hof PR (2013) The nucleus Pararaphales in the human, chimpanzee, and macaque monkey. Brain Struct Funct 218(2):389–403. https://doi.org/10.1007/s00429-012-0403-8
Baizer JS, Wong KM, Paolone NA, Weinstock N, Salvi RJ, Manohar S, Witelson SF, Baker JF, Sherwood CC, Hof PR (2014a) Laminar and neurochemical organization of the dorsal cochlear nucleus of the human, monkey, cat, and rodents. Anat Rec 297(10):1865–1884. https://doi.org/10.1002/ar.23000
Baizer JS, Wong KM, Paolone NA, Weinstock N, Salvi RJ, Manohar S, Witelson SF, Baker JF, Sherwood CC, Hof PR (2014b) Laminar and neurochemical organization of the dorsal cochlear nucleus of the human, monkey, cat, and rodents. Anat Rec (Hoboken) 297(10):1865–1884. https://doi.org/10.1002/ar.23000
Article PubMed CAS Google Scholar
Baizer JS, Wong KM, Salvi RJ, Manohar S, Sherwood CC, Hof PR, Baker JF, Witelson SF (2018a) Species differences in the organization of the ventral cochlear nucleus. Anat Rec (Hoboken) 301(5):862–886. https://doi.org/10.1002/ar.23751
Article PubMed CAS Google Scholar
Baizer JS, Wong KM, Sherwood CC, Hof PR, Witelson SF (2018b) Individual variability in the structural properties of neurons in the human inferior Olive. Brain Struct Funct 223(4):1667–1681. https://doi.org/10.1007/s00429-017-1580-2
Baizer J, Websster C, Witelson SF (2021) Individual variability in the size and organization of the human arcuate nucleus. Brain Struct Funct under review
Baizer JS, Sherwood CC, Hof PR, Baker JF, Witelson SF (2024) Glycine is a transmitter in the human and chimpanzee cochlear nuclei. Front Neuroanat 18:1331230. https://doi.org/10.3389/fnana.2024.1331230
Article PubMed PubMed Central CAS Google Scholar
Baydyuk M, Xu J, Wu LG (2016) The calyx of held in the auditory system: structure, function, and development. Hear Res 338:22–31. https://doi.org/10.1016/j.heares.2016.03.009
Article PubMed PubMed Central Google Scholar
Bazwinsky I, Hilbig H, Bidmon HJ, Rubsamen R (2003) Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). J Comp Neurol 456(3):292–303. https://doi.org/10.1002/cne.10526
Article PubMed CAS Google Scholar
Bazwinsky I, Bidmon HJ, Zilles K, Hilbig H (2005) Characterization of the rhesus monkey superior olivary complex by calcium binding proteins and synaptophysin. J Anat 207(6):745–761. https://doi.org/10.1111/j.1469-7580.2005.00491.x
Article PubMed PubMed Central Google Scholar
Beijen JW, Snik AF, Mylanus EA (2007) Sound localization ability of young children with bilateral cochlear implants. Otol Neurotol 28(4):479–485. https://doi.org/10.1097/MAO.0b013e3180430179
Bledsoe SC Jr., Snead CR, Helfert RH, Prasad V, Wenthold RJ, Altschuler RA (1990) Immunocytochemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trapezoid body to the lateral superior Olive is glycinergic. Brain Res 517(1–2):189–194. https://doi.org/10.1016/0006-8993(90)91025-c
Bosker B (2015) What it takes to be a master sommelier. New Yorker. https://www.newyorker.com/culture/culture-desk/what-it-takes-to-be-a-master-sommelier
Caicedo A, d’Aldin C, Puel JL, Eybalin M (1996) Distribution of calcium-binding protein immunoreactivities in the Guinea pig auditory brainstem. Anat Embryol (Berl) 194(5):465–487. https://doi.org/10.1007/BF00185994
Article PubMed CAS Google Scholar
Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60(5–6):457–474. https://doi.org/10.1016/s0361-9230(03)00050-9
Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247(4):457–476. https://doi.org/10.1002/cne.902470406
Article PubMed CAS Google Scholar
Cohen ES, Brawer JR, Morest DK (1972) Projections of the cochlea to the dorsal cochlear nucleus in the Cat. Exp Neurol 35(3):470–479. https://doi.org/10.1016/0014-4886(72)90117-3
Article PubMed CAS Google Scholar
Dobreva MS, O’Neill WE, Paige GD (2011) Influence of aging on human sound localization. J Neurophysiol 105(5):2471–2486. https://doi.org/10.1152/jn.00951.2010
Article PubMed PubMed Central Google Scholar
Du Y, He Y, Arnott SR, Ross B, Wu X, Li L, Alain C (2015) Rapid tuning of auditory what and where pathways by training. Cereb Cortex 25(2):496–506. https://doi.org/10.1093/cercor/bht251
Dunn CC, Tyler RS, Oakley S, Gantz BJ, Noble W (2008) Comparison of speech recognition and localization performance in bilateral and unilateral cochlear implant users matched on duration of deafness and age at implantation. Ear Hear 29(3):352–359. https://doi.org/10.1097/AUD.0b013e318167b870
Article PubMed PubMed Central Google Scholar
Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1984) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229(3):432–450. https://doi.org/10.1002/cne.902290311
Article PubMed CAS Google Scholar
Firszt JB, Reeder RM, Dwyer NY, Burton H, Holden LK (2015) Localization training results in individuals with unilateral severe to profound hearing loss. Hear Res 319:48–55. https://doi.org/10.1016/j.heares.2014.11.005
Comments (0)