Interactions between insecticidal cry toxins and their receptors

Abdullah MAF, Valaitis AP, Dean DH (2006) Identification of a Bacillus Thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus. BMC Biochem 7:16. https://doi.org/10.1186/1471-2091-7-16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdullah MAF, Moussa S, Taylor MD, Adang MJ (2009) Manduca sexta (Lepidoptera: Sphingidae) Cadherin fragments function as synergists for Cry1A and Cry1C Bacillus Thuringiensis toxins against noctuid moths Helicoverpa Zea, agrotis ipsilon and Spodoptera Exigua. Pest Manag Sci 65:1097–1103. https://doi.org/10.1002/ps.1798

Article  CAS  PubMed  Google Scholar 

Adang MJ (2004) Insect aminopeptidase N. Handbook of proteolytic enzymes. Elsevier, pp 296–299

Adegawa S, Wang Y, Waizumi R, Iizuka T, Takasu Y, Watanabe K, Sato R (2024) Cry toxins use multiple ATP-Binding cassette transporter subfamily C members as Low-Efficiency receptors in Bombyx Mori. Biomolecules 14(3):271. https://doi.org/10.3390/biom14030271

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aimanova KG, Zhuang M, Gill SS (2006) Expression of Cry1Ac Cadherin receptors in insect midgut and cell lines. J Invertebr Pathol 92:178–187. https://doi.org/10.1016/j.jip.2006.04.011

Article  CAS  PubMed  Google Scholar 

Angst BD, Marcozzi C, Magee AI (2001) The Cadherin superfamily: diversity in form and function. J Cell Sci 114:629–641. https://doi.org/10.1242/jcs.114.4.629

Article  CAS  PubMed  Google Scholar 

Aronson AI, Geng C, Wu L (1999) Aggregation of Bacillus Thuringiensis Cry1A toxins upon binding to target insect larval midgut vesicles. Appl Environ Microbiol 65:2503–2507. https://doi.org/10.1128/aem.65.6.2503-2507.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aswathi N, Balakrishnan N, Srinivasan T, Kokiladevi E, Raghu R (2024) Diversity of Bt toxins and their utility in pest management. Egypt J Biol Pest Control 34(1):1–18. https://doi.org/10.1186/s41938-024-00803-6

Atsumi S, Miyamoto K, Yamamoto K et al (2012) Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx Mori. Proc Natl Acad Sci USA 109. https://doi.org/10.1073/pnas.1120698109

Bambawale OM, Tanwar RK, Sharma OP et al (2010) Impact of refugia and integrated pest management on the performance of Transgenic (Bacillus thuringiensis) cotton (Gossypium hirsutum). Indian J Agric Sci 80

Banerjee R, Hasler J, Meagher R, Nagoshi R, Hietala L et al (2017) Mechanism and DNA based detection of field-evolved resistance to Transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci Rep 7:10877. https://doi.org/10.1038/s41598-017-09866-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee R, De Bortoli CP, Huang F et al (2022) Large genomic deletion linked to field-evolved resistance to Cry1F corn in fall armyworm (Spodoptera frugiperda) from Florida. Sci Rep 12(1):1–9. https://doi.org/10.1038/s41598-022-17603-3

Article  CAS  Google Scholar 

Banks DJ, Jurat-Fuentes JL, Dean DH, Adang MJ (2001) Bacillus Thuringiensis Cry1Ac and Cry1Fa δ-endotoxin binding to a novel 110 kda aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated. Insect Biochem Mol Biol 31:909–918. https://doi.org/10.1016/S0965-1748(01)00038-8

Article  CAS  PubMed  Google Scholar 

Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N et al (2011) Parallel evolution of Bacillus Thuringiensis toxin resistance in lepidoptera. Genetics 189:675–679. https://doi.org/10.1534/genetics.111.130971

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker N (2000) Bacterial control of vector-mosquitoes and black flies. Entomopathogenic bacteria: from laboratory to field application. Springer Netherlands, Dordrecht, pp 383–398

Chapter  Google Scholar 

Bel Y, Escriche B (2006) Common genomic structure for the lepidoptera cadherin-like genes. Gene 381:71–80. https://doi.org/10.1016/j.gene.2006.07.001

Article  CAS  PubMed  Google Scholar 

Berry C, O’Neil S, Ben-Dov E et al (2002) Complete sequence and organization of pBtoxis, the Toxin-Coding plasmid of Bacillus Thuringiensis subsp. Israelensis. Appl Environ Microbiol 68:5082–5095. https://doi.org/10.1128/AEM.68.10.50825095.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Best HL, Williamson LJ, Rizkallah PJ, Berry C (2022) The crystal structure of Bacillus Thuringiensis Tpp80Aa1 and its interaction with Galactose-Containing glycolipids. Toxins 14(12):863. https://doi.org/10.3390/toxins14120863

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boaventura D, Ulrich J, Lueke B, Bolzan A, Okuma D et al (2020) Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera Frugiperda from Brazil. Insect Biochem Mol Biol 116:103280. https://doi.org/10.1016/j.ibmb.2019.103280

Article  CAS  PubMed  Google Scholar 

Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the Mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382. https://doi.org/10.1016/j.jmb.2005.02.013

Article  CAS  PubMed  Google Scholar 

Bravo A, Gómez I, Conde J et al (2004) Oligomerization triggers binding of a Bacillus Thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Biomembr 1667:38–46. https://doi.org/10.1016/j.bbamem.2004.08.013

Article  CAS  Google Scholar 

Bravo A, Pacheco S, Gómez I, Soberón M (2023) Mode of action of Bacillus Thuringiensis cry pesticidal proteins. Adv Insect Physiol 65:55–92. https://doi.org/10.1016/bs.aiip.2023.09.003

Article  Google Scholar 

Cantón PE, Reyes EZ, de Escudero IR et al (2011) Binding of Bacillus Thuringiensis subsp. Israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides (NY) 32:595–600. https://doi.org/10.1016/j.peptides.2010.06.005

Article  CAS  Google Scholar 

Cao B, Nie Y, Guan Z, Chen C, Wang N, Wang Z et al (2022) The crystal structure of Cry78Aa from Bacillus Thuringiensis provides insights into its insecticidal activity. Commun Biol 5(1):801. https://doi.org/10.1038/s42003-022-03754-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carroll J, Convents D, Van Damme J et al (1997) Intramolecular proteolytic cleavage of Bacillus Thuringiensis Cry3A δ-Endotoxin May facilitate its coleopteran toxicity. J Invertebr Pathol 70:41–49. https://doi.org/10.1006/jipa.1997.4656

Article  CAS  PubMed  Google Scholar 

Chattopadhyay P, Banerjee G (2018) Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech 8:201. https://doi.org/10.1007/s13205-018-1223-1

Article  PubMed  PubMed Central  Google Scholar 

Chen J, Hua G, Jurat-Fuentes JL et al (2007) Synergism of Bacillus Thuringiensis toxins by a fragment of a toxin-binding Cadherin. Proc Natl Acad Sci USA 104:13901–13906. https://doi.org/10.1073/pnas.0706011104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Aimanova KG, Fernandez LE et al (2009a) Aedes aegypti Cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus Thuringiensis subsp. Israelensis. Biochem J 424:191–200. https://doi.org/10.1042/BJ20090730

Article  CAS  PubMed  Google Scholar 

Chen J, Aimanova KG, Pan S, Gill SS (2009b) Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus Thuringiensis Cry11A toxin. Insect Biochem Mol Biol 39:688–696. https://doi.org/10.1016/j.ibmb.2009.08.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Liang G, Zhang J et al (2010) Proteomic analysis of novel Cry1Ac binding proteins in Helicoverpa armigera (Hübner). Archives of insect biochemistry and physiology: published in collaboration with the entomological. Soc Am 73:61–73

CAS  Google Scholar 

Chen J, Likitvivatanavong S, Aimanova KG, Gill SS (2013) A 104 kDa Aedes aegypti aminopeptidase N is a putative receptor for the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Insect Biochem Mol Biol 43:1201–1208. https://doi.org/10.1016/j.ibmb.2013.09.007

Clark BW, Phillips TA, Coats JR (2005) Environmental fate and effects of Bacillus Thuringiensis (Bt) proteins from Transgenic crops: a review. J Agric Food Chem 53:4643–4653. https://doi.org/10.1021/jf040442k

Article  CAS 

Comments (0)

No login
gif