Abdullah MAF, Valaitis AP, Dean DH (2006) Identification of a Bacillus Thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus. BMC Biochem 7:16. https://doi.org/10.1186/1471-2091-7-16
Article CAS PubMed PubMed Central Google Scholar
Abdullah MAF, Moussa S, Taylor MD, Adang MJ (2009) Manduca sexta (Lepidoptera: Sphingidae) Cadherin fragments function as synergists for Cry1A and Cry1C Bacillus Thuringiensis toxins against noctuid moths Helicoverpa Zea, agrotis ipsilon and Spodoptera Exigua. Pest Manag Sci 65:1097–1103. https://doi.org/10.1002/ps.1798
Article CAS PubMed Google Scholar
Adang MJ (2004) Insect aminopeptidase N. Handbook of proteolytic enzymes. Elsevier, pp 296–299
Adegawa S, Wang Y, Waizumi R, Iizuka T, Takasu Y, Watanabe K, Sato R (2024) Cry toxins use multiple ATP-Binding cassette transporter subfamily C members as Low-Efficiency receptors in Bombyx Mori. Biomolecules 14(3):271. https://doi.org/10.3390/biom14030271
Article CAS PubMed PubMed Central Google Scholar
Aimanova KG, Zhuang M, Gill SS (2006) Expression of Cry1Ac Cadherin receptors in insect midgut and cell lines. J Invertebr Pathol 92:178–187. https://doi.org/10.1016/j.jip.2006.04.011
Article CAS PubMed Google Scholar
Angst BD, Marcozzi C, Magee AI (2001) The Cadherin superfamily: diversity in form and function. J Cell Sci 114:629–641. https://doi.org/10.1242/jcs.114.4.629
Article CAS PubMed Google Scholar
Aronson AI, Geng C, Wu L (1999) Aggregation of Bacillus Thuringiensis Cry1A toxins upon binding to target insect larval midgut vesicles. Appl Environ Microbiol 65:2503–2507. https://doi.org/10.1128/aem.65.6.2503-2507.1999
Article CAS PubMed PubMed Central Google Scholar
Aswathi N, Balakrishnan N, Srinivasan T, Kokiladevi E, Raghu R (2024) Diversity of Bt toxins and their utility in pest management. Egypt J Biol Pest Control 34(1):1–18. https://doi.org/10.1186/s41938-024-00803-6
Atsumi S, Miyamoto K, Yamamoto K et al (2012) Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx Mori. Proc Natl Acad Sci USA 109. https://doi.org/10.1073/pnas.1120698109
Bambawale OM, Tanwar RK, Sharma OP et al (2010) Impact of refugia and integrated pest management on the performance of Transgenic (Bacillus thuringiensis) cotton (Gossypium hirsutum). Indian J Agric Sci 80
Banerjee R, Hasler J, Meagher R, Nagoshi R, Hietala L et al (2017) Mechanism and DNA based detection of field-evolved resistance to Transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci Rep 7:10877. https://doi.org/10.1038/s41598-017-09866-y
Article CAS PubMed PubMed Central Google Scholar
Banerjee R, De Bortoli CP, Huang F et al (2022) Large genomic deletion linked to field-evolved resistance to Cry1F corn in fall armyworm (Spodoptera frugiperda) from Florida. Sci Rep 12(1):1–9. https://doi.org/10.1038/s41598-022-17603-3
Banks DJ, Jurat-Fuentes JL, Dean DH, Adang MJ (2001) Bacillus Thuringiensis Cry1Ac and Cry1Fa δ-endotoxin binding to a novel 110 kda aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated. Insect Biochem Mol Biol 31:909–918. https://doi.org/10.1016/S0965-1748(01)00038-8
Article CAS PubMed Google Scholar
Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N et al (2011) Parallel evolution of Bacillus Thuringiensis toxin resistance in lepidoptera. Genetics 189:675–679. https://doi.org/10.1534/genetics.111.130971
Article CAS PubMed PubMed Central Google Scholar
Becker N (2000) Bacterial control of vector-mosquitoes and black flies. Entomopathogenic bacteria: from laboratory to field application. Springer Netherlands, Dordrecht, pp 383–398
Bel Y, Escriche B (2006) Common genomic structure for the lepidoptera cadherin-like genes. Gene 381:71–80. https://doi.org/10.1016/j.gene.2006.07.001
Article CAS PubMed Google Scholar
Berry C, O’Neil S, Ben-Dov E et al (2002) Complete sequence and organization of pBtoxis, the Toxin-Coding plasmid of Bacillus Thuringiensis subsp. Israelensis. Appl Environ Microbiol 68:5082–5095. https://doi.org/10.1128/AEM.68.10.50825095.2002
Article CAS PubMed PubMed Central Google Scholar
Best HL, Williamson LJ, Rizkallah PJ, Berry C (2022) The crystal structure of Bacillus Thuringiensis Tpp80Aa1 and its interaction with Galactose-Containing glycolipids. Toxins 14(12):863. https://doi.org/10.3390/toxins14120863
Article CAS PubMed PubMed Central Google Scholar
Boaventura D, Ulrich J, Lueke B, Bolzan A, Okuma D et al (2020) Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera Frugiperda from Brazil. Insect Biochem Mol Biol 116:103280. https://doi.org/10.1016/j.ibmb.2019.103280
Article CAS PubMed Google Scholar
Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the Mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382. https://doi.org/10.1016/j.jmb.2005.02.013
Article CAS PubMed Google Scholar
Bravo A, Gómez I, Conde J et al (2004) Oligomerization triggers binding of a Bacillus Thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Biomembr 1667:38–46. https://doi.org/10.1016/j.bbamem.2004.08.013
Bravo A, Pacheco S, Gómez I, Soberón M (2023) Mode of action of Bacillus Thuringiensis cry pesticidal proteins. Adv Insect Physiol 65:55–92. https://doi.org/10.1016/bs.aiip.2023.09.003
Cantón PE, Reyes EZ, de Escudero IR et al (2011) Binding of Bacillus Thuringiensis subsp. Israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides (NY) 32:595–600. https://doi.org/10.1016/j.peptides.2010.06.005
Cao B, Nie Y, Guan Z, Chen C, Wang N, Wang Z et al (2022) The crystal structure of Cry78Aa from Bacillus Thuringiensis provides insights into its insecticidal activity. Commun Biol 5(1):801. https://doi.org/10.1038/s42003-022-03754-6
Article CAS PubMed PubMed Central Google Scholar
Carroll J, Convents D, Van Damme J et al (1997) Intramolecular proteolytic cleavage of Bacillus Thuringiensis Cry3A δ-Endotoxin May facilitate its coleopteran toxicity. J Invertebr Pathol 70:41–49. https://doi.org/10.1006/jipa.1997.4656
Article CAS PubMed Google Scholar
Chattopadhyay P, Banerjee G (2018) Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech 8:201. https://doi.org/10.1007/s13205-018-1223-1
Article PubMed PubMed Central Google Scholar
Chen J, Hua G, Jurat-Fuentes JL et al (2007) Synergism of Bacillus Thuringiensis toxins by a fragment of a toxin-binding Cadherin. Proc Natl Acad Sci USA 104:13901–13906. https://doi.org/10.1073/pnas.0706011104
Article CAS PubMed PubMed Central Google Scholar
Chen J, Aimanova KG, Fernandez LE et al (2009a) Aedes aegypti Cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus Thuringiensis subsp. Israelensis. Biochem J 424:191–200. https://doi.org/10.1042/BJ20090730
Article CAS PubMed Google Scholar
Chen J, Aimanova KG, Pan S, Gill SS (2009b) Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus Thuringiensis Cry11A toxin. Insect Biochem Mol Biol 39:688–696. https://doi.org/10.1016/j.ibmb.2009.08.003
Article CAS PubMed PubMed Central Google Scholar
Chen L, Liang G, Zhang J et al (2010) Proteomic analysis of novel Cry1Ac binding proteins in Helicoverpa armigera (Hübner). Archives of insect biochemistry and physiology: published in collaboration with the entomological. Soc Am 73:61–73
Chen J, Likitvivatanavong S, Aimanova KG, Gill SS (2013) A 104 kDa Aedes aegypti aminopeptidase N is a putative receptor for the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Insect Biochem Mol Biol 43:1201–1208. https://doi.org/10.1016/j.ibmb.2013.09.007
Clark BW, Phillips TA, Coats JR (2005) Environmental fate and effects of Bacillus Thuringiensis (Bt) proteins from Transgenic crops: a review. J Agric Food Chem 53:4643–4653. https://doi.org/10.1021/jf040442k
Comments (0)