Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386. https://doi.org/10.1007/s002030050341
Article CAS PubMed Google Scholar
Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50(2):75–86. https://doi.org/10.1016/j.femsec.2004.06.002
Article CAS PubMed Google Scholar
Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, Eikmanns BJ (2011) RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotech 154(2–3):126–139. https://doi.org/10.1016/j.jbiotec.2010.07.001
Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77(6):1925–1936. https://doi.org/10.1128/AEM.02473-10
Article CAS PubMed PubMed Central Google Scholar
Bhatt A, Molle V, Besra GS, Jacobs WR Jr, Kremer L (2007) The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 64(6):1442–1454. https://doi.org/10.1111/j.1365-2958.2007.05761.x
Article CAS PubMed Google Scholar
Bitoun JP, Wen ZT (2016) Transcription factor Rex in regulation of pathophysiology in oral pathogens. Mol Oral Microbiol 31(2):115–124. https://doi.org/10.1111/omi.12114
Article CAS PubMed Google Scholar
Blombach B, Cramer A, Eikmanns BJ, Schreiner M (2009) RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 16:236–239. https://doi.org/10.1159/000108782
Article CAS PubMed Google Scholar
Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of Poly (β-hydroxyalkanoates) for potential applications as biodegradable Polyesters. Appl Environ Microbiol 54(8):1977–1982. https://doi.org/10.1128/aem.54.8.1977-1982.1988
Article CAS PubMed PubMed Central Google Scholar
Cappelletti M, Zampolli J, Di Gennaro P, Zannoni D (2019) Genomics of Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer Nature Switzerland, pp 23–60. https://doi.org/10.1007/978-3-030-11461-9_2
Firrincieli A, Presentato A, Favoino G, Marabottini R, Allevato E, Stazi SR, Scarascia Mugnozza G, Harfouche A, Petruccioli M, Turner RJ, Zannoni D, Cappelletti M (2019) Identification of resistance genes and response to arsenic in Rhodococcus aetherivorans BCP1. Front Microbiol 10:888. https://doi.org/10.3389/fmicb.2019.00888
Article PubMed PubMed Central Google Scholar
Firrincieli A, Zannoni D, Donini E, Dostálová H, Rädisch R, Iommarini L, Turner RJ, Busche T, Pátek M, Cappelletti M (2022) Transcriptomic analysis of the dual response of Rhodococcus aetherivorans BCP1 to inorganic arsenic oxyanions. Appl Environ Microbiol 88(7):e0220921. https://doi.org/10.1128/aem.02209-21
Article CAS PubMed Google Scholar
Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, Cook GM (2015) Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl Environ Microbiol 81(4):1190–1199. https://doi.org/10.1128/AEM.03364-14
Article CAS PubMed PubMed Central Google Scholar
Grzeszik C, Ross K, Schneider K, Reh M, Schlegel HG (1997) Location, catalytic activity, and subunit composition of NAD-reducing hydrogenases of some alcaligenes strains and Rhodococcus opacus MR22. Arch Microbiol 167:172–176. https://doi.org/10.1007/s002030050431
Article CAS PubMed Google Scholar
Hamoen LW, Meile JC, de Jong W, Noirot P, Errington J (2006) SepF, a novel FtsZ-interating protein required for a late step in cell division. Mol Microbiol 59(3):989–999. https://doi.org/10.1111/j.1365-2958.2005.04987.x
Article CAS PubMed Google Scholar
Hernández MA, Alvarez HM (2010) Glycogen formation by Rhodococcus species and the effect of Inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630. FEMS Microbiol Lett 312(1):93–99. https://doi.org/10.1111/j.1574-6968.2010.02108.x
Article CAS PubMed Google Scholar
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A (2014) ReadXplorer-visualization and analysis of mapped sequences. Bioinformatics 30(16):2247–2254. https://doi.org/10.1093/bioinformatics/btu205
Article CAS PubMed PubMed Central Google Scholar
Hori K, Kobayashi A, Ikeda H, Unno H (2009) Rhodococcus aetherivorans IAR1, a new bacterial strain synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from toluene. J Biosci Bioeng 107(2):145–150. https://doi.org/10.1016/j.jbiosc.2008.10.005
Article CAS PubMed Google Scholar
Huergo LF, Dixon R (2015) The emergence of 2-oxoglutarate as a master regulator metabolite. Microbiol Mol Biol Rev 79(4):419–435. https://doi.org/10.1128/MMBR.00038-15
Article CAS PubMed PubMed Central Google Scholar
Ikeda Y, Kishimoto M, Shintani M, Yoshida N (2022) Oligotrophic gene expression in Rhodococcus erythropolis N9T-4 under various nutrient conditions. Microorganisms 10(9):1725. https://doi.org/10.3390/microorganisms10091725
Article CAS PubMed PubMed Central Google Scholar
Ikegaya R, Shintani M, Kimbara K, Fukuda M, Yoshida N (2020) Identification of a transcriptional regulator for oligotrophy-responsive promoter in Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 84(4):865–868. https://doi.org/10.1080/09168451.2019.1709792
Article CAS PubMed Google Scholar
Inaba S, Sakai H, Kato H, Horiuchi T, Yano H, Ohtsubo Y, Tsuda M, Nagata Y, Nagata Y (2020) Expression of an alcohol dehydrogenase gene in a heterotrophic bacterium induces carbon dioxide-dependent high-yield growth under oligotrophic conditions. Microbiology 166(6):531–545. https://doi.org/10.1099/mic.0.000908
Article CAS PubMed Google Scholar
Kalkus J, Reh M, Schlegel HG (1990) Hydrogen autotrophy of nocardia Opaca strains is encoded by linear megaplasmids. Microbiology 136(6):1145–1151. https://doi.org/10.1099/00221287-136-6-1145
Kamruzzaman M, Wu AY, Iredell JR (2021) Biological functions of type II toxin-antitoxin systems in bacteria. Microorganisms 9(6):1276. https://doi.org/10.3390/microorganisms9061276
Article CAS PubMed PubMed Central Google Scholar
Knorr S, Sinn M, Galetskiy D, Williams RM, Wang C, Müller N, Mayans O, Schleheck D, Hartig JS (2018) Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate. Nature communications 9(1):5071. https://doi.org/10.1038/s41467-018-07563-6
Kurata T, Saha CK, Buttress JA, Mets T, Brodiazhenko T, Turnbull KJ, Atkinson GC (2022) A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains. Proc Nat Acad Sci U S A 119(6):e2102212119. https://doi.org/10.1073/pnas.2102212119
Larkin MJ, Kulakov LA, Allen CC (2010) Genomes and plasmids in Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer Nature Switzerland, pp 73–90. https://doi.org/10.1007/978-3-030-11461-9_2
LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74(9):2627–2636. https://doi.org/10.1128/AEM.02711-07
Article CAS PubMed PubMed Central Google Scholar
Letek M, Gonzalez P, MacArthur I, Rodríguez H, Freeman TC, Valero-Rello A, Vazquez-Boland JA (2010) The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6(9):e1001145. https://doi.org/10.1371/journal.pgen.1001145
Article CAS PubMed PubMed Central Google Scholar
Love MI, Huber W, Anders S (2014) Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8
Comments (0)