The DNA damage tolerance factor Rad5 and telomere replication

Abdallah P, Luciano P, Runge KW, Lisby M, Géli V, Gilson E, Teixeira MT (2009) A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol 11(8):988–993. https://doi.org/10.1038/NCB1911

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguilera P, Whalen J, Minguet C, Churikov D, Freudenreich C, Simon MN, Géli V (2020) The nuclear pore complex prevents sister chromatid recombination during replicative senescence. Nat Commun 11(1). https://doi.org/10.1038/s41467-019-13979-5

Analikwu BT, Deshayes A, Torre J, van der, Guérin T, Katan AJ, Béneut C, Barth R, Phipps J, Scolari V, Veaute X, Barrington C, Busso D, Uhlmann F, Dubrana K, Mattarocci S, Dekker C, Marcand S (2023) Telomere protein arrays stall DNA loop extrusion by condensin. BioRxiv https://doi.org/10.1101/2023.10.29.564563

Arbel M, Liefshitz B, Kupiec M (2020) How yeast cells deal with stalled replication forks. Curr Genet 66(5):911–915. https://doi.org/10.1007/S00294-020-01082-Y

Article  CAS  PubMed  Google Scholar 

Arbel M, Choudhary K, Tfilin O, Kupiec M (2021) PCNA loaders and Unloaders-One ring that rules them all. Genes 12(11). https://doi.org/10.3390/GENES12111812

Bai G, Kermi C, Stoy H, Schiltz CJ, Bacal J, Zaino AM, Hadden MK, Eichman BF, Lopes M, Cimprich KA (2020) HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis. Mol Cell 78(6):1237–1251e7. https://doi.org/10.1016/j.molcel.2020.04.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ball LG, Xu X, Blackwell S, Hanna MD, Lambrecht AD, Xiao W (2014) The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair 16(1):74–83. https://doi.org/10.1016/J.DNAREP.2014.02.016

Article  CAS  PubMed  Google Scholar 

Bellí G, Colomina N, Castells-Roca L, Lorite NP (2022) Post-Translational modifications of PCNA: guiding for the best DNA damage tolerance choice. J Fungi (Basel Switzerland) 8(6). https://doi.org/10.3390/JOF8060621

Berti M, Vindigni A (2016) Replication stress: Getting back on track. In Nature Structural and Molecular Biology (Vol. 23, Issue 2, pp. 103–109). Nature Publishing Group. https://doi.org/10.1038/nsmb.3163

Bianchi A, Shore D (2007) Early replication of short telomeres in budding yeast. Cell 128(6):1051–1062. https://doi.org/10.1016/J.CELL.2007.01.041

Article  CAS  PubMed  Google Scholar 

Blastyák A, Pintér L, Unk I, Prakash L, Prakash S, Haracska L (2007) Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28(1):167–175. https://doi.org/10.1016/J.MOLCEL.2007.07.030

Article  PubMed  PubMed Central  Google Scholar 

Blastyák A, Hajdú I, Unk I, Haracska L (2010) Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol 30(3):684–693. http:/ https://doi.org/10.1128/MCB.00863-09

Article  CAS  PubMed  Google Scholar 

Bonetti D, Rinaldi C, Vertemara J, Notaro M, Pizzul P, Tisi R, Zampella G, Longhese MP (2020) DNA binding modes influence Rap1 activity in the regulation of telomere length and MRX functions at DNA ends. Nucleic Acids Res 48(5):2424–2441. https://doi.org/10.1093/nar/gkz1203

Article  CAS  PubMed  Google Scholar 

Bonnell E, Pasquier E, Wellinger RJ (2021) Telomere replication: solving multiple end replication problems. Front Cell Dev Biology 9. https://doi.org/10.3389/FCELL.2021.668171

Branzei D, Szakal B (2016) DNA damage tolerance by recombination: molecular pathways and DNA structures. DNA Repair (Amst) 44:68–75. https://doi.org/10.1016/j.dnarep.2016.05.008

Brenner KA, Nandakumar J (2022) Consequences of telomere replication failure: the other end-replication problem. Trends in biochemical sciences, vol 47. Elsevier Ltd, pp 506–517. https://doi.org/10.1016/j.tibs.2022.03.013

Bryant EE, Šunjevarić I, Berchowitz L, Rothstein R, Reid RJD (2019) Rad5 dysregulation drives hyperactive recombination at replication forks resulting in cisplatin sensitivity and genome instability. Nucleic Acids Research 47(17):9144–9159. Htpp//https://doi.org/10.1093/nar/gkz631

Carlile CM, Pickart CM, Matunis MJ, Cohen RE (2009) Synthesis of free and proliferating cell nuclear antigen-bound Polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. J Biol Chem 284(43):29326–29334. https://doi.org/10.1074/JBC.M109.043885

Article  CAS  PubMed  PubMed Central  Google Scholar 

Challal D, Barucco M, Kubik S, Feuerbach F, Candelli T, Geoffroy H, Benaksas C, Shore D, Libri D (2018) General regulatory factors control the fidelity of transcription by restricting Non-coding and ectopic initiation. Mol Cell 72(6):955–969e7. https://doi.org/10.1016/J.MOLCEL.2018.11.037

Article  CAS  PubMed  Google Scholar 

Chavez DA, Greer BH, Eichman BF (2018) The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression. J Biol Chem 293(22):8484–8494. https://doi.org/10.1074/jbc.RA118.002905

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y (2019) The structural biology of the shelterin complex. Biol Chem 400(4):457–466. https://doi.org/10.1515/HSZ-2018-0368

Article  CAS  PubMed  Google Scholar 

Choi K, Batke S, Szakal B, Lowther J, Hao F, Sarangi P, Branzei D, Ulrich HD, Zhao X (2015) Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance. Nucleic Acids Res 43(5):2666–2677. https://doi.org/10.1093/nar/gkv004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cicconi A, Chang S (2020) Shelterin and the replisome: at the intersection of telomere repair and replication. Curr Opin Genet Dev 60:77–84. https://doi.org/10.1016/J.GDE.2020.02.016

Article  CAS  PubMed  Google Scholar 

Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385(6618):744–747. https://doi.org/10.1038/385744A0

Article  CAS  PubMed  Google Scholar 

De Lange T (2018) Shelterin-Mediated telomere protection. Annu Rev Genet 52:223–247. https://doi.org/10.1146/ANNUREV-GENET-032918-021921

Article  PubMed  Google Scholar 

Douglas ME, Diffley JFX (2021) Budding yeast Rap1, but not telomeric DNA, is inhibitory for multiple stages of DNA replication in vitro. Nucleic Acids Res 49(10):5671–5683. https://doi.org/10.1093/NAR/GKAB416

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elserafy M, El-Khamisy SF (2018) Choose your yeast strain carefully: the RAD5 gene matters. Nat Rev Mol Cell Biol 19(6):343–344. https://doi.org/10.1038/S41580-018-0005-2

Article  CAS  PubMed  Google Scholar 

Fallet E, Jolivet P, Soudet J, Lisby M, Gilson E, Teixeira MT (2014) Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res 42(6):3648–3665. https://doi.org/10.1093/NAR/GKT1328

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan HY, Cheng KK, Klein HL (1996) Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination hpr1 Delta of Saccharomyces cerevisiae. Genetics 142:749–759. https://doi.org/10.1093/genetics/142.3.749

Fan Q, Xu X, Zhao X, Wang Q, Xiao W, Guo Y, Fu YV (2018) Rad5 coordinates translesion DNA synthesis pathway by recognizing specific DNA structures in saccharomyces cerevisiae. Curr Genet 64(4):889–899. https://doi.org/10.1007/S00294-018-0807-Y

Article  CAS  PubMed  Google Scholar 

Gallo D, Kim TH, Szakal B, Saayman X, Narula A, Park Y, Branzei D, Zhang Z, Brown GW (2019) Rad5 recruits Error-Prone DNA polymerases for mutagenic repair of SsDNA gaps on undamaged templates. Mol Cell 73(5):900–914e9. https://doi.org/10.1016/J.MOLCEL.2019.01.001

Article  CAS  PubMed  Google Scholar 

Gangavarapu V, Haracska L, Unk I, Johnson RE, Prakash S, Prakash L (2006) Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 26(20):7783–7790. https://doi.org/10.1128/MCB.01260-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geronimo CL, Zakian VA (2016) Getting it done at the ends: Pif1 family DNA helicases and telomeres. In DNA Repair (Vol. 44, pp. 151–158). Elsevier B.V. https://doi.org/10.1016/j.dnarep.2016.05.021

Giannattasio M, Zwicky K, Follonier C, Foiani M, Lopes M, Branzei D (2014) Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 21(10):884–892. https://doi.org/10.1038/NSMB.2888

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hafner L, Lezaja A, Zhang X, Lemmens L, Shyian M, Albert B, Follonier C, Nunes JM, Lopes M, Shore D, Mattarocci S (2018) Rif1 binding and control of Chromosome-Internal DNA replication origins is limited by telomere sequestration. Cell Rep 23(4):983–992. https://doi.org/10.1016/J.CELREP.2018.03.113

Article  CAS 

Comments (0)

No login
gif