J. Rodríguez, G. Castañeda, I. Lizcano. Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes. Electrochimica Acta 269 (2018) 668-675. https://doi.org/10.1016/j.electacta.2018.03.051
Q. Shen, S.K. You, S.G. Park, H. Jiang, D. Guo, B. Chen, X. Wang. Electrochemical biosensing for cancer cells based on TiO2/CNT nanocomposites modified electrodes. Electroanalysis 20 (2008) 2526-2530. https://doi.org/10.1002/elan.200804351
.M. Khoshfetrat, M.A. Mehrgardi. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry 114 (2017) 24-32. https://doi.org/10.1016/j.bioelechem.2016.12.001
J. Dupuis, P. Brice, S. François, L. Ysebaert, S. de Guibert, V. Levy, S. Leprêtre, S. Choquet, M.S. Dilhuydy, L. Fornecker, V. Morel, A. Tempescul. Ofatumumab in refractory chronic lymphocytic leukemia: experience through the French early access program. Clinical Lymphoma, Myeloma & Leukemia 15 (2015) e43-e46. https://doi.org/10.1016/j.clml.2014.07.013
M.M. Zangeneh, A. Zangeneh. Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti‐acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Applied Organometallic Chemistry 34 (2020) e5271. https://doi.org/10.1002/aoc.5271
S.N. Mahnik, K. Lenz, N. Weissenbacher, R.M. Mader, M. Fuerhacker. Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere 66 (2007) 30-37. https://doi.org/10.1016/j.chemosphere.2006.05.051
S. Soleimani, E. Arkan, T. Farshadnia, Z. Mahnam, F. Jalili, H.C. Goicoechea, A.R. Jalalvand. The first attempt on fabrication of a nano-biosensing platform and exploiting first-order advantage from impedimetric data: Application to simultaneous biosensing of doxorubicin, daunorubicin and idarubicin. Sensing and Bio-Sensing Research 29 (2020) 100366. https://doi.org/10.1016/j.sbsr.2020.100366
H.E.S. Kara. Redox mechanism of anticancer drug idarubicin and in-situ evaluation of interaction with DNA using an electrochemical biosensor. Bioelectrochemistry 99 (2014) 17-23. https://doi.org/10.1016/j.bioelechem.2014.06.002
J.A. Ribeiro, F. Silva, C.M. Pereira. Electrochemical study of the anticancer drug daunorubicin at a water/oil interface: Drug lipophilicity and quantification. Analytical Chemistry 85 (2013) 1582-1590. https://doi.org/10.1021/ac3028245
A. Goida, Y. Kuzin, V. Evtugyn, A. Porfireva, G. Evtugyn, T. Hianik. Electrochemical sensing of idarubicin—DNA interaction using electropolymerized Azure B and Methylene blue mediation. Chemosensors 10 (2022) 33. https://doi.org/10.3390/chemosensors10010033
J. De Jong, P.A. Maessen, A. Akkerdaas, S.F. Cheung, H.M. Pinedo, W.J.F. Van der Vijgh. Sensitive method for the determination of daunorubicin and all its known metabolites in plasma and heart by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications 529 (1990) 359-368. https://doi.org/10.1016/S0378-4347(00)83842-6
T. Pérez Ruiz, C. Martínez Lozano, A. Sanz, E. Bravo. Simultaneous determination of doxo-rubicin, daunorubicin, and idarubicin by capillary electrophoresis with laser‐induced fluore-scence detection. Electrophoresis 22 (2001) 134-138. https://doi.org/10.1002/1522-2683
G. Hempel, S. Haberland, P. Schulze-Westhoff, N. Möhling, G. Blaschke, J. Boos. Determination of idarubicin and idarubicinol in plasma by capillary electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications 698 (1997) 287-292. https://doi.org/10.1016/S0378-4347(97)00299-5
N. Griese, G. Blaschke, J. Boos, G. Hempel. Determination of free and liposome-associated daunorubicin and daunorubicinol in plasma by capillary electrophoresis. Journal of Chromatography A 979 (2002) 379-388. https://doi.org/10.1016/S0021-9673(02)01440-1
S.N. Qin, Z.Q. Jie, L.Y. Chen, J.X. Zheng, Y. Xie, L. Feng, Z.M. Chen, k. Salmineh, J.J. Sun. Real-time monitoring of daunorubicin pharmacokinetics with nanoporous electrochemical aptamer-based sensors in vivo. Sensors & Actuators, B: Chemical 411 (2024) 135710. https://doi.org/10.1016/j.snb.2024.135710
F.Y. Kong, L. Yao, R.F. Li, H.Y. Li, Z.X. Wang, W.X. Lv, W. Wang. Synthesis of nitrogen-doped reduced graphene oxide loading with Au-Ag bimetallic nanoparticles for electrochemical detection of daunorubicin. Journal of Alloys and Compounds 797 (2019) 413-420. https://doi.org/10.1016/j.jallcom.2019.04.276
E. Arkan, G. Paimard, K. Moradi. A novel electrochemical sensor based on electrospun TiO2 nanoparticles/carbon nanofibers for determination of Idarubicin in biological samples. Journal of Electroanalytical Chemistry 801 (2017) 480-487. https://doi.org/10.1016/j.jelechem.2017.08.034
H. Subak. Novel determination of the influence of idarubicin upon DNA chain structure using an electrochemical DNA biosensor by voltammetry. Analytical Letters 57 (2024) 2994-3008. https://doi.org/10.1080/00032719.2024.2308051
Z. Chen, Y. Zhang, Y. Yang, X. Shi, L. Zhang, G. Jia. Hierarchical nitrogen-doped holey graphene as sensitive electrochemical sensor for methyl parathion detection. Sensors & Actuators, B: Chemical 336 (2021) 129721. https://doi.org/10.1016/j.snb.2021.129721
R. Sun, R. Lv, Y. Li, T. Du, L. Chen, Y. Zhang, X. Zhang, L. Zhang, H. Ma, H. Sun, Y. Qi. Simple and sensitive electrochemical detection of sunset yellow and Sudan I in food based on AuNPs/Zr-MOF-Graphene. Food Control 145 (2023) 109491. https://doi.org/10.1016/j.foodcont.2022.109491
H. Beitollahi, S. Tajik, M.R. Aflatoonian, A. Makarem. Glutathione detection at carbon paste electrode modified with ethyl 2-(4-ferrocenyl-[1,2,3] triazol-1-yl) acetate, ZnFe2O4 nano-particles and ionic liquid. Journal of Electrochemical Science and Engineering 12 (2022) 209-217. https://doi.org/10.5599/jese.1230
G. Paimard, E. Ghasali, M. Baeza. Screen-printed electrodes: fabrication, modification, and biosensing applications. Chemosensors 11 (2023) 113. https://doi.org/10.3390/chemosensors11020113
V.R.R. Bernardo-Boongaling, N. Serrano, J.J. García-Guzmán, J.M. Palacios-Santander, J.M. Díaz-Cruz. Screen-printed electrodes modified with green-synthesized gold nanoparticles for the electrochemical determination of aminothiols. Journal of Electroanalytical Chemistry 847 (2019) 113184. https://doi.org/10.1016/j.jelechem.2019.05.066
H. Mahmoudi-Moghaddam, H. Beitollahi, S. Tajik, Sh. Jahani, H. Khabazzadeh, R. Alizadeh. Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor. Russian Journal of Electrochemistry 53 (2017) 452-460. https://doi.org/10.1134/S1023193517050123
F. Kong, J. Luo, L. Jing, Y. Wang, H. Shen, R. Yu, S. Sun, Y. Xing, T. Ming, M. Liu, H. Jin, X. Cai. Reduced graphene oxide and gold nanoparticles-modified electrochemical aptasensor for highly sensitive detection of doxorubicin. Nanomaterials 13 (2023) 1223. https://doi.org/10.3390/nano13071223
H. Beitollahi, S. Tajik, Z. Dourandish, F. Garkani Nejad. Simple preparation and characterization of hierarchical flower-like NiCo2O4 nanoplates: applications for sunset yellow electrochemical analysis. Biosensors 12 (2022) 912. https://doi.org/10.3390/bios12110912
J. Cheng, Y. Li, J. Zhong, Z. Lu, G. Wang, M. Sun, Y. Jiang, P. Zou, X. Wang, Q. Zhao, Y. Wang, H. Rao. Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone. Chemical Engineering Journal 398 (2020) 125664. https://doi.org/10.1016/j.cej.2020.125664
L. Qian, S. Durairaj, S. Prins, A. Chen. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors & Bioelectronics 175 (2021) 112836. https://doi.org/10.1016/j.bios.2020.112836
L.A.D. Gugoasa, F. Pogacean, S. Kurbanoglu, L.B. Tudoran, A.B. Serban, I. Kacso, S. Pruneanu. Graphene-gold nanoparticles nanozyme-based electrochemical sensor with enhanced laccase-like activity for determination of phenolic substrates. Journal of the Electrochemical Society 168 (2021) 067523. https://doi.org/10.1149/1945-7111/ac0c32
X. Si, M. Han, W. Li, C. Bai, X. Xu, J. Xu. Electrochemical determination of vanillin in cookies at mediated AuNPs/GR nanocomposites modified glassy carbon electrode. Current Analytical Chemistry 18 (2022) 818-825. https://doi.org/10.2174/1573411018666220518093417
[31] H. Beitollahi, M. Shahsavari, I. Sheikhshoaie, S. Tajik, P. Mohammadzadeh Jahani, S.Z. Mohammadi, A.A. Afshar. Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food and Chemical Toxicology 161 (2022) 112824. https://doi.org/10.1016/j.fct.2022.112824
Y. Qian, F. Zhang, H. Pang. A review of MOFs and their composites‐based photocatalysts: synthesis and applications. Advanced Functional Materials 31 (2021) 2104231. https://doi.org/10.1002/adfm.202104231
N. Kajal, V. Singh, R. Gupta, S. Gautam. Metal organic frameworks for electrochemical sensor applications: A review. Environmental Research 204 (2022) 112320. https://doi.org/10.1016/j.envres.2021.112320
M. Zhao, Q. Lu, Q. Ma, H. Zhang. Two‐dimensional metal–organic framework nanosheets. Small Methods 1 (2017) 1600030. https://doi.org/10.1002/smtd.201600030
M.V. Varsha, G. Nageswaran. 2D layered metal organic framework nanosheets as an emerging platform for electrochemical sensing. Journal of the Electrochemical Society 167 (2020) 136502. https://doi.org/10.1149/1945-7111/abb4f5
Q. Li, J. Zhou, R. Liu, L. Han. An amino-functionalized metal–organic framework nanosheet array as a battery-type electrode for an advanced supercapattery. Dalton Transactions 48 (2019) 17163-17168. https://doi.org/10.1039/C9DT03821C
Comments (0)