WHO Bacterial Priority Pathogens List, 2024. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 10 February 2025).
WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022. https://www.who.int/publications/i/item/9789240062702 (accessed on 10 February 2025).
Assessing the health burden of infections with antibiotic-resistant bacteria in the EU/EEA, 2016-2020. European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2022. https://www.ecdc.europa.eu/en/publications-data/health-burden-infections-antibiotic-resistant-bacteria-2016-2020 (accessed on 10 February 2025).
H. Fongang, A.T. Mbaveng, V. Kuete. Global burden of bacterial infections and drug resistance. in Advances in Botanical Research, V. Kuete (Ed.), Academic Press & Elsevier, Amsterdam, Netherlands, 2023, pp.1-20. https://doi.org/10.1016/bs.abr.2022.08.001
National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Long-Term Health and Economic Effects of Antimicrobial Resistance in the United States. in Combating Antimicrobial Resistance and Protecting the Miracle of Modern Medicine, G.H. Palmer, G.J. Buckley (Eds.), National Academies Press, Washington D.C., USA, 2022. https://nap.nationalacademies.org/catalog/26350/combating-antimicrobial-resistance-and-protecting-the-miracle-of-modern-medicine (accessed on 10 February 2025).
GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: A systematic analysis with forecasts to 2050. Lancet 404 (2024) 1199-1226. https://doi.org/10.1016/s0140-6736(24)01867-1
GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 400 (2022) 2221-2248. https://doi.org/10.1016/S0140-6736(22)02185-7
J. Jampilek. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Current Medicinal Chemistry 25 (2018) 4972-5006. https://doi.org/10.2174/0929867324666170918122633
M. Miethke, M. Pieroni, T. Weber, M. Brönstrup, P. Hammann, L. Halby, P.B. Arimondo, P. Glaser, B. Aigle, H.B. Bode, R. Moreira, Y. Li, A. Luzhetskyy, M.H. Medema, J.L. Pernodet, M. Stadler, J.R. Tormo, O. Genilloud, A.W. Truman, K.J. Weissman, E. Takano, S. Sabatini, E. Stegmann, H. Brötz-Oesterhelt, W. Wohlleben, M. Seemann, M. Empting, A.K.H. Hirsch, B. Loretz, C.M. Lehr, A. Titz, J. Herrmann, T. Jaeger, S. Alt, T. Hesterkamp, M. Winterhalter, A. Schiefer, K. Pfarr, A. Hoerauf, H. Graz, M. Graz, M. Lindvall, S. Ramurthy, A. Karlén, M. van Dongen, H. Petkovic, A. Keller, F. Peyrane, S. Donadio, L. Fraisse, L.J.V. Piddock, I.H. Gilbert, H.E. Moser, R. Müller. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry 5 (2021) 726-749. https://doi.org/10.1038/s41570-021-00313-1
N.J. Ayon. High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery. Metabolites 13 (2023) 625. https://doi.org/10.3390/metabo13050625
N.K. Boyd, C. Teng, C.R. Frei. Brief overview of approaches and challenges in new antibiotic development: A focus on drug repurposing. Frontiers in Cellular and Infection Microbiology 11 (2021) 684515. https://doi.org/10.3389/fcimb.2021.684515
S.K. Mondal, S. Chakraborty, S. Manna, S.M. Mandal. Antimicrobial nanoparticles: Current landscape and future challenges. RSC Pharmaceutics 1 (2024) 388-402. https://doi.org/10.1039/D4PM00032C
D.A. Gray, M. Wenzel. Multitarget approaches against multiresistant superbugs. ACS Infectious Diseases 6 (2020) 1346-1365. https://doi.org/10.1021/acsinfecdis.0c00001
C.J. Suckling, I.S. Hunter, F.J. Scott. Multitargeted anti-infective drugs: Resilience to resistance in the antimicrobial resistance era. Future Drug Discovery 4 (2022) FDD73. https://doi.org/10.4155/fdd-2022-0001
J. Feng, Y. Zheng, W. Ma, A. Ihsan, H. Hao, G. Cheng, X. Wang. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacology & Therapeutics 252 (2023) 108550. https://doi.org/10.1016/j.pharmthera.2023.108550
J.B. Bremner. An update review of approaches to multiple action-based antibacterials. Antibiotics 12 (2023) 865. https://doi.org/10.3390/antibiotics12050865
G. Stelitano, J.C. Sammartino, L.R. Chiarelli. Multitargeting compounds: A promising strategy to overcome multi-drug resistant tuberculosis. Molecules 25 (2020) 1239. https://doi.org/10.3390/molecules25051239
M. Lagadinou, M.O. Onisor, A. Rigas, D.V. Musetescu, D. Gkentzi, S.F. Assimakopoulos, G. Panos, M. Marangos. Antimicrobial properties on non-antibiotic drugs in the era of increased bacterial resistance. Antibiotics 9 (2020) 107. https://doi.org/10.3390/antibiotics9030107
A. Imramovsky, M. Pesko, K. Kralova, M. Vejsova, J. Stolarikova, J. Vinsova, J. Jampilek. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules 16 (2011) 2414-2430. https://doi.org/10.3390/molecules16032414
I. Kushkevych, P. Kollar, A.L. Ferreira, D. Palma, A. Duarte, M.M. Lopes, M. Bartos, K. Pauk, A. Imram¬ovsky, J. Jampilek. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. Journal of Applied Biomedicine 14 (2016) 125-130. https://doi.org/10.1016/j.jab.2016.01.005
L. Borbala-Horvath, M. Kratky, V. Pflegr, E. Mahes, G. Gyulai, G. Kohut, A. Babiczky, B. Biri-Kovacs, Z. Baranyai, J. Vinsova, S Bosze. Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. European Journal of Pharmaceutics and Biopharmaceutics 174 (2022) 111-130. https://doi.org/10.1016/j.ejpb.2022.03.009
G. Paraskevopoulos, S. Monteiro, R. Vosatka, M. Kratky, L. Navratilova, F. Trejtnar, J. Stolarikova, J. Vinsova. Novel salicylanilides from 4,5-dihalogenated salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry 25 (2017) 1524-1532. https://doi.org/10.1016/j.bmc.2017.01.016
M. Alhashimi, A. Mayhoub, M.N. Seleem. Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 63 (2019) e01225-19. https://doi.org/10.1128/aac.01225-19
H. Almolhim, A.E.M. Elhassanny, N.S. Abutaleb, A.S. Abdelsattar, M.N. Seleem, P.R. Carlier. Substituted salicylic acid analogs offer improved potency against multidrug-resistant Neisseria gonorrhoeae and good selectivity against commensal vaginal bacteria. Scientific Reports 13 (2023) 14468. https://doi.org/10.1038/s41598-023-41442-5
T. Yokoyama, M. Mizuguchi, Y. Nabeshima, Y. Nakagawa, T. Okada, N. Toyooka, K. Kusaka. Rafoxanide, a salicylanilide anthelmintic, interacts with human plasma protein transthyretin. The FEBS Journal 290 (2023) 5158-5170. https://doi.org/10.1111/febs.16915
T. Kauerova, M.J. Perez-Perez, P. Kollar. Salicylanilides and their anti-cancer properties. International Journal of Molecular Sciences 24 (2023) 1728. https://doi.org/10.3390/ijms24021728
J. Otevrel, Z. Mandelova, M. Pesko, J. Guo, K. Kralova, F. Sersen, M. Vejsova, D.S. Kalinowski, Z. Kovacevic, A. Coffey, J. Csollei, D.R. Richardson, J. Jampilek. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules 15 (2010) 8122-8142. https://doi.org/10.3390/molecules15118122
A. Imramovsky, M. Pesko, J.M. Ferriz, K. Kralova, J. Vinsova, J Jampilek. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorganic & Medicinal Chemistry Letters 21 (2011) 4564-4567. https://doi.org/10.1016/j.bmcl.2011.05.118
T. Gonec, J. Kos, I. Zadrazilova, M. Pesko, S. Keltosova, J. Tengler, P. Bobal, P. Kollar, A. Cizek, K. Kralova, J. Jampilek. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry 21 (2013) 6531-6541. https://doi.org/10.1016/j.bmc.2013.08.030
T. Gonec, S. Pospisilova, T. Kauerova, J. Kos, J. Dohanosova, M. Oravec, P. Kollar, A. Coffey, T. Liptaj, A. Cizek, J. Jampilek. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules 21 (2016) 1068. https://doi.org/10.3390/molecules21081068
H. Michnova, S. Pospisilova, T. Gonec, I. Kapustikova, P. Kollar, V. Kozik, R. Musiol, I. Jendrzejewska, J. Vanco, Z. Travnicek, A. Cizek, A. Bak, J. Jampilek. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: comparative molecular surface analysis. Molecules 24 (2019) 2991. https://doi.org/10.3390/molecules24162991
E. Spaczynska, A. Mrozek-Wilczkiewicz, K. Malarz, J. Kos, T. Gonec, M. Oravec, R. Gawecki, A. Bak, J. Dohanosova, I. Kapustikova, T. Liptaj, J. Jampilek, R. Musiol. Design and synthesis of anti-cancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action. Scientific Reports 9 (2019) 6387. https://doi.org/10.1038/s41598-019-42595-y
T. Kauerova, T. Gonec, J. Jampilek, S. Hafner, A.K. Gaiser, T. Syrovets, R. Fedr, K. Soucek, P. Kollar. Ring-substituted 1-hydroxynaphthalene-2-carboxanilides inhibit proliferation and trigger mitochondria-mediated apoptosis. International Journal of Molecular Sciences 21 (2020) 3416. https://doi.org/10.3390/ijms21103416
H. Terada, S. Goto, K. Yamamoto, I. Takeuchi, Y. Hamada, K. Miyake. Structural requirements of salicylanilides for uncoupling activity in mitochondria: quantitative analysis of structure-uncoupling relationships. Biochimica et Biophysica Acta 936 (1988) 504-512. https://doi.org/10.1016/0005-2728(88)90027-8
I.Y. Lee, T.D. Gruber, A. Samuels, M. Yun, B. Nam, M. Kang, K. Crowley, B. Winterroth, H.I. Boshoff, C.E. Barry. Structure-activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling. Bioorganic and Medicinal Chemistry 21 (2013) 114-126. https://doi.org/10.1016/j.bmc.2012.10.056
M.J. Macielag, J.P. Demers, S.A. Fraga-Spano, D.J. Hlasta, S.G. Johnson, R.M. Kanojia, R.K. Russell, Z. Sui, M.A. Weidner-Wells, H. Werblood, B.D. Foleno, R.M. Goldschmidt, M.J. Loeloff, G.C. Webb, J.F. Barrett. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. Journal of Medicinal Chemistry 41 (1998) 2939-2945. https://doi.org/10.1021/jm9803572
N. Dasgupta, V. Kapur, K.K. Singh, T.K. Das, S. Sachdeva, K. Jyothisri, J.S. Tyagi. Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tubercle and Lung Disease 80 (2000) 141-159. https://doi.org/10.1054/tuld.2000.0240
R.E. Moellering, B.F. Cravatt. How chemoproteomics can enable drug discovery and development. Chemical Biology 19 (2012) 11-22. https://doi.org/10.1016/j.chembiol.2012.01.001
K.P. Malarney, P.V. Chang. Chemoproteomic approaches for unraveling prokaryotic biology. Israel Journal of Chemistry 63 (2023) e202200076. https://doi.org/10.1002/ijch.202200076
G. Drewes, S. Knapp. Chemoproteomics and chemical probes for target discovery. Trends in Biotechnology 36 (2018) 1275-1286. https://doi.org/10.1016/j.tibtech.2018.06.008
L.H. Jones, H. Neubert. Clinical chemoproteomics—Opportunities and obstacles. Science Translational Medicine 9 (2017) 7951. https://doi.org/10.1126/scitranslmed.aaf7951
X. Chen, Y.K. Wong, J. Wang, J. Zhang, Y. Lee, H. Shen, Q. Lin, Z.C. Hua. Target identification with quantitative activity based protein profiling (ABPP). Proteomics 17 (2017) 1600212. https://doi.org/10.1002/pmic.201600212
S. Wang, Y. Tian, M. Wang, M. Wang, G. Sun, X. Sun. Advanced activity-based protein profiling application strategies for drug development. Frontiers in Pharmacology 9 (2018) 353. https://doi.org/10.3389/fphar.2018.00353
K. Naumann. Influence of chlorine substituents on biological activity of chemicals: A review. Pest Management Science 56 (2000) 3-21. https://doi.org/10.1002/(SICI)1526-4998(200001)56:1%3C3::AID-PS107%3E3.0.CO;2-P
W.Y. Fang, L. Ravindar, K.P. Rakesh, H.M. Manukumar, C.S. Shantharam, N.S. Alharbi, H.L. Qin. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. European Journal of Medicinal Chemistry 173 (2019) 117-153. https://doi.org/10.1016/j.ejmech.2019.03.063
M. Dolezal, J. Zitko, Z. Osicka, J. Kunes, M. Vejsova, V. Buchta, J. Dohnal, J. Jampilek, K. Kralova. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules 15 (2010) 8567-8581. https://doi.org/10.3390/molecules15128567
O.S. Faleye, B.R. Boya, J.H. Lee, I. Choi, J. Lee. Halogenated antimicrobial agents to combat drug-resistant pathogens. Pharmacological Reviews 76 (2023) 90-141. https://doi.org/10.1124/pharmrev.123.000863
R. Huber, L. Marcourt, M. Heritier, A. Luscher, L. Guebey, S. Schnee, E. Michellod, S. Guerrier, J.L. Wolfender, L. Scapozza, T. Kohler, K. Gindro, E.F. Queiroz.Generation of potent antibacterial compounds through enzymatic and chemical modifications of the trans-δ-viniferin scaffold. Scientific Reports 13 (2023) 15986. https://doi.org/10.1038/s41598-023-43000-5
A. Krawczyk-Lebek, B. Zarowska, T. Janeczko, E. Kostrzewa-Suslow. Antimicrobial activity of chalcones with a chlorine atom and their glycosides. International Journal of Molecular Sciences 25 (2024) 9718. https://doi.org/10.3390/ijms25179718
M. Perz, D. Szymanowska, T. Janeczko, E. Kostrzewa-Suslow. Antimicrobial properties of flavonoid derivatives with bromine, chlorine, and nitro group obtained by chemical synthesis and biotransformation studies. International Journal of Molecular Sciences 25 (2024) 5540. https://doi.org/10.3390/ijms25105540
T.A. Taylor, C.G. Unakal. Staphylococcus aureus Infection; StatPearls Publishing, Treasure Island, FL, USA, 2024. https://www.ncbi.nlm.nih.gov/books/NBK441868 (accessed on 10 February 2025).
T. Gonec, J. Kos, M. Pesko, J. Dohanosova, M. Oravec, T. Liptaj, K. Kralova, J. Jampilek. Halogenated 1-hydroxynaphthalene-2-carboxanilides affecting photosynthetic electron transport in photosystem II. Molecules 22 (2017) 1709. https://doi.org/10.3390/molecules22101709
EZChrom Elite software ver. 3.3.2. Agilent, Santa Clara, CA, USA. https://ezchrom-elite.software.informer.com/3.3/
I. Zadrazilova, S. Pospisilova, K. Pauk, A. Imramovsky, J. Vinsova, A. Cizek, J. Jampilek. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Research International 2015 (2015) 349534. https://doi.org/10.1155/2015/349534
U. Nubel, J. Dordel, K. Kurt, B. Strommenger, H. Westh, S.K. Shukla, H. Zemlickova, R. Leblois, T. Wirth, T. Jombart, F. Balloux, W. Witte. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLOS Pathogens 6 (2010) e1000855. https://doi.org/10.1371/journal.ppat.1000855
G. Bosgelmez-Tinaz, S. Ulusoy, B. Aridogan, F. Coskun-Ari. Evaluation of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. European Journal of Clinical Microbiology & Infectious Diseases 25 (2006) 410-412. https://doi.org/10.1007/s10096-006-0153-8
F. Martineau, F.J. Picard, P.H. Roy, M. Ouellette, M.G. Bergeron. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. Journal of Clinical Microbiology 36 (1998) 618-623. https://doi.org/10.1128/jcm.36.3.618-623.1998
M.P. Weinstein, J.B. Patel. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A11, 11th edition, Committee for Clinical Laboratory Standards, Wayne, PA, 2018. https://clsi.org/media/1928/m07ed11_sample.pdf
R. Schwalbe, L. Steele-Moore, A.C. Goodwin. Antimicrobial Susceptibility Testing Protocols, CRC Press, Boca Raton, FL, USA, 2007. https://doi.org/10.1201/9781420014495
Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf
E. Grela, J. Kozłowska, A. Grabowiecka. Current methodology of MTT assay in bacteria—A review. Acta Histochemica 120 (2018) 303-311. https://doi.org/10.1016/j.acthis.2018.03.007
GraphPad Prism 5.00 software. GraphPadSoftware, San Diego, CA, USA. http://www.graphpad.com
Progenesis QI 4.0. Waters, Milford, USA, https://www.waters.com/nextgen/us/en/products/informatics-and-software/mass-spectrometry-software/progenesis-qi-software.html
UniProt: The Universal Protein Knowledgebase in 2023. https://www.uniprot.org/
K. Wu, S.H. Kwon, X. Zhou, C. Fuller, X. Wang, J. Vadgama, Y. Wu. Overcoming challenges in small-molecule drug bioavailability: A review of key factors and approaches. International Journal of Molecular Sciences 25 (2024) 13121. https://doi.org/10.3390/ijms252313121
ACD/Percepta ver. 2012. Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2012. https://www.acdlabs.com/products/percepta-platform/
C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 46 (2001) 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
E.H. Kerns, L. Di. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press, San Diego, CA, USA, 2008. ISBN 978-0-12-369520-8
D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 45 (2002) 2615-2623. https://doi.org/10.1021/jm020017n
T.D.Y. Chung, D.B. Terry, L.H. Smith. In vitro and in vivo assessment of ADME and PK properties during lead selection and lead optimization - guidelines, benchmarks and rules of thumb. in The Assay Guidance Manual, S. Markossian (Ed), National Institutes of Health - National Center for Advancing Translational Sciences, Rockville, MD, USA, 2015. https://www.ncbi.nlm.nih.gov/books/NBK326710/ (accessed on 08 February 2025).
C. Hansch. Bioisosterism. Intra-Science Chemistry Reports 8 (1974) 17-25.
I. Korona-Glowniak, W. Nitek, W. Tejchman, E. Zeslawska. Influence of chlorine and methyl substituents and their position on the antimicrobial activities and crystal structures of 4-methyl-1,6-diphenylpyrimidine-2(1H)-selenone derivatives. Acta Crystallographica Section C: Structural Chemistry 77 (2021) 649-658. https://doi.org/10.1107/s205322962100975x
S. Janowska, J. Stefanska, D. Khylyuk, M. Wujec. The importance of substituent position for antibacterial activity in the group of thiosemicarbazide derivatives. Molecules 29 (2024) 1333. https://doi.org/10.3390/molecules29061333
A. Bak, J. Kos, H. Michnova, T. Gonec, S. Pospisilova, V. Kozik, A. Cizek, A. Smolinski, J. Jampilek. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. International Journal of Molecular Sciences 21 (2020), 6583. https://doi.org/10.3390/ijms21186583
MetaboAnalyst 6.0. https://dev.metaboanalyst.ca/MetaboAnalyst/upload/StatUploadView.xhtml
Staphylococcus aureus subsp. aureus Mu50 (MRSA/VISA): SAV1363. DBGET Search, Kyoto University Bioinformatics Center. https://www.genome.jp/entry/sav:SAV1363
B. Couvreur, R. Wattiez, A. Bollen, P.l. Falmagne, D. Le Ray, J.C. Dujardin. Eubacterial HslV and HslU subunits homologs in primordial eukaryotes. Molecular Biology and Evolution 19 (2002) 2110-2117. https://doi.org/10.1093/oxfordjournals.molbev.a004036
F. Zhang, W. Cheng. The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics 11 (2022) 1215. https://doi.org/10.3390/antibiotics11091215
F.G. Avci. Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions. World J Microbiol Biotechnol 40 (2024) 285. https://doi.org/10.1007/s11274-024-04090-z
B. Zavizion, Z. Zhao, A. Nittayajarn, R.J. Rieder. Rapid microbiological testing: monitoring the development of bacterial stress. PLoS One 5 (2010) e13374. https://doi.org/10.1371/journal.pone.0013374
Comments (0)