A.B. Hashkavayi, J.B. Raoof, Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@ SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin, Biosensensors and Bioelectronics 91 (2017) 650–657. https://doi.org/10.1016/j.bios.2017.01.025.
S. Charak, D.K. Jangir, G. Tyagi, R. Mehrotra, Interaction studies of Epirubicin with DNA using spectroscopic techniques, Journal of Molecular Structure, 1000 (2011) 150–154. https://doi.org/10.1016/j.molstruc.2011.06.013.
R. Li, L. Dong, J. Huang, Ultra performance liquid chromatography–tandem mass spectrometry for the determination of epirubicin in human plasma, Analytica Chimica Acta 546 (2005) 167–173. https://doi.org/10.1016/j.aca.2005.04.073.
E.G. Mayhew, D. Lasic, S. Babbar, F.J. Martin, Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid, International journal of cancer 51 (1992) 302–309. https://doi.org/10.1002/ijc.2910510221.
T. Liu, Y. Liao, H. Tao, J. Zeng, G. Wang, Z. Yang, Y. Wang, Y. Xiao, J. Zhou, X. Wang, RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells, Oncology Letters 15 (2018) 4129–4136. https://doi.org/10.3892/ol.2018.7847.
A. Erdem, M. Ozsoz, Interaction of the anticancer drug epirubicin with DNA, Analytica Chimica Acta 437 (2001) 107–114. https://doi.org/10.1016/S0003-2670(01)00942-4.
H. Roché, P. Fumoleau,M. Spielmann, J.-L. Canon, T. Delozier, D. Serin,M. Symann, P. Kerbrat, P. Soulié, F. Eichler, Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial, Journal of Clinical Oncology 24 (2006) 5664–5671. https://doi.org/10.1200/JCO.2006.07.3916.
A.F. Okines, S.E. Ashley, D. Cunningham, J. Oates, A. Turner, J. Webb, C. Saffery, Y. Jo Chua, I. Chau, Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for advanced esophagogastric cancer: dose-finding study for the prospective multicenter, randomized, phase II/III REAL-3 trial, Journal of clinical oncology 28 (2010) 3945–3950. https://doi.org/10.1200/JCO.2010.29.284.
M. Hasanzadeh, N. Shadjou, Pharmacogenomic study using bio-and nanobioelectrochemistry: drug–DNA interaction, Materials Science and Engineering: C 61 (2016) 1002–1017. https://doi.org/10.1016/j.msec.2015.12.020.
A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations, Sensors and actuators b: chemical, 284 (2019) 568–574. https://doi.org/10.1016/j.snb.2018.12.164.
R.A. de Boer, J.-S. Hulot, C.G. Tocchetti, J.P. Aboumsallem, P. Ameri, S.D. Anker, J. Bauersachs, E. Bertero, A.J.S. Coats, J. ˇCelutkien.e, others, Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC), European journal of heart failure 22 (2020) 2272-2289. https://doi.org/10.1002/ejhf.2029.
N. Treder, O. Maliszewska, I. Oledzka, P. Kowalski, N. Miekus, T. Baczek, E. Bien, M.A. Krawczyk, E. Adamkiewicz-Droiynska, A. Plenis, Development and validation of a high-performance liquid chromatographic method with a fluorescence detector for the analysis of epirubicin in human urine and plasma, and its application in drug monitoring, Journal of Chromatography B 1136 (2020) 121910. https://doi.org/10.1016/j.jchromb.2019.121910.
K.E. Maudens, C.P. Stove, V.F. Cocquyt, H. Denys, W.E. Lambert, Development and validation of a liquid chromatographic method for the simultaneous determination of four anthracyclines and their respective 13-S-dihydro metabolites in plasma and saliva, Journal of Chromatography B 877 (2009) 3907–3915. https://doi.org/10.1016/j.jchromb.2009.09.044.
P. Gopinath, S. Veluswami, R. Thangarajan, G. Gopisetty, RP-HPLC-UV method for estimation of fluorouracil–epirubicin–cyclophosphamide and their metabolite mixtures in human plasma (matrix), Journal of Chromatographic Science 56 (2018) 488–497. https://doi.org/10.1093/chromsci/bmy020.
C. Sottani, P. Rinaldi, E. Leoni, G. Poggi, C. Teragni, A. Delmonte, C. Minoia, Simultaneous determination of cyclophosphamide, ifosfamide, doxorubicin, epirubicin and daunorubicin in human urine using high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry: bioanalytical method validation. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 22 (2008) 2645-2659.https://doi.org/10.1002/rcm.3657.
D.M. Souza, J.F. Reichert, A.F. Martins, A simultaneous determination of anti-cancer drugs in hospital effluent by DLLME HPLC-FLD, together with a risk assessment, Chemosphere 201 (2018) 178–188. https://doi.org/10.1016/j.chemosphere.2018.02.164.
N. Guichard, M. Ogereau, L. Falaschi, S. Rudaz, J. Schappler, P. Bonnabry, S. Fleury-Souverain, Determination of 16 antineoplastic drugs by capillary electrophoresis with UV detection: Applications in quality control, Electrophoresis 39 (2018) 2512–2520. https://doi.org/10.1002/elps.201800007.
G. Whitaker, A. Lillquist, S.A. Pasas, R. O’Connor, F. Regan, C.E. Lunte, M. R. Smyth, CE-LIF method for the separation of anthracyclines: application to protein binding analysis in plasma using ultrafiltration, Journal of separation science 31 (2008) 1828–1833. https://doi.org/10.1002/jssc.200700629.
I. Eman, A.F. El-Yazbi, An eco-friendly stability-indicating spectrofluorimetric method for the determination of two anticancer stereoisomer drugs in their pharmaceutical preparations following micellar enhancement: Application to kinetic degradation studies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 163 (2016) 145–153. https://doi.org/10.1016/j.saa.2016.03.034.
J. Mo, L. Shen, Q. Xu, J. Zeng, J. Sha, T. Hu, K. Bi, Y. Chen, An Nd3+-sensitized upconversion fluorescent sensor for epirubicin detection, Nanomaterials 9 (2019) 1700. https://doi.org/10.3390/nano9121700.
A.B. Hashkavayi, J.B. Raoof, Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@ SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin, Biosensors and Bioelectronics 91 (2017) 650–657. https://doi.org/10.1016/j.bios.2017.01.025.
H. Zhang, Fabrication of a single-walled carbon nanotube-modified glassy carbon electrode and its application in the electrochemical determination of epirubicin, Journal of Nanoparticle Research 6 (2004) 665–669. https://doi.org/10.1007/s11051-004-3723-7.
S. Tajik, H. Beitollahi, S. A. Ahmadi, M. B. Askari, A.Di Bartolomeo, Screen-printed electrode surface modification with NiCo2O4/RGO nanocomposite for hydroxylamine detection. Nanomaterials, 11 (2021) 3208. https://doi.org/10.3390/nano11123208.
H. Beitollahi, F. Garkani-Nejad, S. Tajik, M. R. Ganjali, Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@ SiO2 nanocomposite. Iranian Journal of Pharmaceutical Research: IJPR, 18 (2019). 80-90. PMCID: PMC6487427, PMID: 31089346
R.M. Silva, A.D. da Silva, J.R. Camargo, B.S. de Castro, L.M. Meireles, P.S. Silva, T.A. Silva, Carbon nanomaterials-based screen-printed electrodes for sensing applications, Biosensors 13 (2023) 453. https://doi.org/10.3390/bios13040453.
X. Liu, Y. Yao, Y. Ying, J. Ping, Recent advances in nanomaterial-enabled screen- printed electrochemical sensors for heavy metal detection, TrAC Trends in Analytical Chemistry 115 (2019) 187–202. https://doi.org/10.1016/j.trac.2019.03.021.
H. Beitollahi, J.B. Raoof, R. Hosseinzadeh, Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Analytical Sciences, 27 (2011) 991-991. https://doi.org/10.2116/analsci.27.991.
Z. Zhang, H. Karimi-Maleh, In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324 (2023) 138302. https://doi.org/10.1016/j.chemosphere.2023.138302
S.E. Baghbamidi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1, 2, 3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. International Journal of Electrochemical Science, 11 (2016) 10874-10883. https://doi.org/10.20964/2016.12.92.
Z. Zhang, H. Karimi-Maleh, Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal, Advanced Composites and Hybrid Materials 6 (2023) 68. https://doi.org/10.1007/s42114-023-00652-1.
S.Z. Mohammadi, H. Beitollahi, E. Bani Asadi, Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environmental Monitoring and Assessment, 187 (2015) 1-10. https://doi.org/10.1007/s10661-015-4309-9.
H.M. Moghaddam, H. Beitollahi, S. Tajik, S. Jahani, H. Khabazzadeh, R. Alizadeh, Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor. Russian Journal of Electrochemistry, 53 (2017) 452-460. https://doi.org/10.1134/S1023193517050123.
S. Zheng, N. Zhang, L. Li, T. Liu, Y. Zhang, J. Tang, S. Su, Synthesis of graphene oxide-coupled CoNi bimetallic MOF nanocomposites for the simultaneous analysis of catechol and hydroquinone. Sensors 23 (2023) 6957. https://doi.org/10.3390/s23156957.
M. Shahsavari, M. Mortazavi, S. Tajik, I. Sheikhshoaie, H. Beitollahi, Synthesis and characterization of GO/ZIF-67 nanocomposite: investigation of catalytic activity for the determination of epinine in the presence of dobutamine. Micromachines, 13 (2022) 88. https://doi.org/10.3390/mi13010088.
J. Mei, J. Han, F. Wu, Q. Pan, F. Zheng, J. Jiang, Q. Li, SnS@C nanoparticles anchored on graphene oxide as high-performance anode materials for lithium-ion batteries. Frontiers in Chemistry 10 (2023) 1105997. https://doi.org/10.3389/fchem.2022.1105997.
S.E. Baghbamidi, H. Beitollahi, S. Tajik, Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine. Analytical & Bioanalytical Electrochemistry, 6 (2014) 634-645.
C. Bhuvaneswari, A. Elangovan, C. Sharmila, K. Sudha, G. Arivazhagan, Fabrication of cobalt tungstate/N-rGO nanocomposite: Application towards the detection of antibiotic drug-Furazolidone. Colloids and Surfaces A: Physicochemical and Engineering Aspects 656 (2023) 130299. https://doi.org/10.1016/j.colsurfa.2022.130299.
T. Nandagopal, G. Balaji, S. Vadivel, Tuning the morphology and size of NiMoO4 nanoparticles anchored on reduced graphene oxide (rGO) nanosheets: The optimized hybrid electrodes for high energy density asymmetric supercapacitors. Journal of Electroanalytical Chemistry 928 (2023) 116944. https://doi.org/10.1016/j.jelechem.2022.116944.
L.W. Bai, Y.F. Shi, X. Zhang, X.B. Liu, F. Wu, C. Liu, W.B. Lu, A two-dimensional NiMoO4 nanowire electrode for the sensitive determination of hydroquinone in four types of actual water samples, Journal of Analysis and Testing 6 (2022) 382–392. https://doi.org/10.1007/s41664-022-00236-w.
K.S. Ranjith, A.E. Vilian, S.M. Ghoreishian, R. Umapathi, S.K. Hwang, C.W. Oh, Y.K. Han, Hybridized 1D–2D MnMoO4–MXene nanocomposites as high-performing electrochemical sensing platform for the sensitive detection of dihydroxybenzene isomers in wastewater samples, Journal of Hazardous Materials 421 (2022) 126775. https://doi.org/10.1016/j.jhazmat.2021.126775.
C. Ling, L. Zhou, H. Jia, First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst, RSC advances 4 (2014) 24692–24697. https://doi.org/10.1039/C4RA03893B.
H. Jia, J. Stark, L. Zhou, C. Ling, T. Sekito, Z. Markin, Different catalytic behavior of amorphous and crystalline cobalt tungstate for electrochemical water oxidation, RSC advances 2 (2012) 10874–10881. https://doi.org/10.1039/C2RA21993J
J. Zhang, J. Wei, J. Li, M. Xiahou, Z. Sun, A. Cao, Y. Chen, Delicate construction of Z-scheme heterojunction photocatalysts by ZnS quantum dots wrapped CoWO4 nanoparticles for highly efficient environmental remediation. ACS Applied Nano Materials 7 (2024) 20101–20113. https://doi.org/10.3390/mi15111360.
B. Sriram, S. Gouthaman, S.F. Wang, Y.F. Hsu, Cobalt molybdate hollow spheres decorated graphitic carbon nitride sheets for electrochemical sensing of dimetridazole, Food Chemistry 430 (2024) 136853. https://doi.org/10.1016/j.foodchem.2023.136853.
Y. Li, J. Zheng, J. Yan, Y. Liu, M. Guo, Y. Zhang, C. Meng, La-doped NiWO4 coupled with reduced graphene oxide for effective electrochemical determination of diphenylamine. Dalton Transactions 52 (2023) 12808–12818. https://doi.org/10.1039/D3DT02524A.
S. Ramanathan, A. Thamilselvan, N. Radhika, D. Padmanabhan, A. Durairaj, A. Obadiah, S. Vasanthkumar, Development of rutin-rGO/TiO2 nanocomposite for electrochemical detection and photocatalytic removal of 2,4-DCP, Journal of the Iranian Chemical Society 18 (2021) 2457–2472. https://doi.org/10.1007/s13738-021-02205-z.
R. Kumar, T. Bhuvana, A. Sharma, Nickel tungstate–graphene nanocomposite for simultaneous electrochemical detection of heavy metal ions with application to complex aqueous media. RSC advances 7 (2017) 42146–42158. https://doi.org/10.1039/C7RA08047F.
X. Xu, J. Shen, N. Li, M. Ye, Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochimica Acta 150 (2014) 23–34. https://doi.org/10.1016/j.electacta.2014.10.139.
Comments (0)