Dynamic modeling of astrocyte-neuron interactions under the influence of Aβ deposition

Abramov AY, Duchen MR (2005) The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos Trans Royal Soc London Series B Biol Sci 360(1464):2309–2314. https://doi.org/10.1098/rstb.2005.1766

Article  CAS  Google Scholar 

Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci: off J Soc Neurosci 23(12):5088–5095. https://doi.org/10.1523/JNEUROSCI.23-12-05088.2003

Article  CAS  Google Scholar 

Abramov AY, Canevari L, Duchen MR (2004) Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochem Biophys Acta 1742(1–3):81–87. https://doi.org/10.1016/j.bbamcr.2004.09.006

Article  PubMed  CAS  Google Scholar 

Alberdi E, Wyssenbach A, Alberdi M, Sánchez-Gómez MV, Cavaliere F, Rodríguez JJ, Verkhratsky A, Matute C (2013) Ca2+-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12(2):292–302. https://doi.org/10.1111/acel.12054

Article  PubMed  CAS  Google Scholar 

Alves VS, Alves-Silva HS, Orts DJB, Ribeiro-Silva L, Arcisio-Miranda M, Oliveira FA (2019) Calcium signaling in neurons and glial cells: role of Cav1 channels. Neuroscience 421:95–111. https://doi.org/10.1016/j.neuroscience.2019.09.041

Article  PubMed  CAS  Google Scholar 

Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215. https://doi.org/10.1016/s0166-2236(98)01349-6

Article  PubMed  CAS  Google Scholar 

Arispe N, Pollard HB, Rojas E (1994a) β-Amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem 140(2):119–125. https://doi.org/10.1007/BF00926750

Article  PubMed  CAS  Google Scholar 

Arispe N, Pollard HB, Rojas E (1994b) The ability of amyloid beta-protein [a beta P (1–40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer’s disease. Ann N Y Acad Sci 747:256–266. https://doi.org/10.1111/j.1749-6632.1994.tb44414.x

Article  PubMed  CAS  Google Scholar 

Blanchard BJ, Thomas VL, Ingram VM (2002) Mechanism of membrane depolarization caused by the Alzheimer Abeta1-42 peptide. Biochem Biophys Res Commun 293(4):1197–1203. https://doi.org/10.1016/S0006-291X(02)00346-7

Article  PubMed  CAS  Google Scholar 

Briggs CA, Schneider C, Richardson JC, Stutzmann GE (2013) β amyloid peptide plaques fail to alter evoked neuronal calcium signals in APP/PS1 Alzheimer’s disease mice. Neurobiol Aging 34(6):1632–1643. https://doi.org/10.1016/j.neurobiolaging.2012.12.013

Article  PubMed  PubMed Central  CAS  Google Scholar 

Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321(5896):1686–1689. https://doi.org/10.1126/science.1162844

Article  PubMed  CAS  Google Scholar 

Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6(6):983–992. https://doi.org/10.1016/0896-6273(91)90238-u

Article  PubMed  CAS  Google Scholar 

Costa RO, Lacor PN, Ferreira IL, Resende R, Auberson YP, Klein WL, Oliveira CR, Rego AC, Pereira CM (2012) Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell 11(5):823–833. https://doi.org/10.1111/j.1474-9726.2012.00848.x

Article  PubMed  CAS  Google Scholar 

Daschil N, Obermair GJ, Flucher BE, Stefanova N, Hutter-Paier B, Windisch M, Humpel C, Marksteiner J (2013) CaV1.2 calcium channel expression in reactive astrocytes is associated with the formation of amyloid-β plaques in an Alzheimer’s disease mouse model. J Alzheimer’s Dis 37(2):439–451. https://doi.org/10.3233/JAD-130560

Article  CAS  Google Scholar 

De Caluwé J, Dupont G (2013) The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and Ca2+. J Theor Biol 331:12–18. https://doi.org/10.1016/j.jtbi.2013.04.015

Article  PubMed  CAS  Google Scholar 

de Lima IBQ, Ribeiro FM (2023) The implication of glial metabotropic glutamate receptors in Alzheimer’s disease. Curr Neuropharmacol 21(2):164–182. https://doi.org/10.2174/1570159X20666211223140303

Article  PubMed  PubMed Central  Google Scholar 

Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers*♦. J Biol Chem 280(17):17294–17300. https://doi.org/10.1074/jbc.M500997200

Article  PubMed  CAS  Google Scholar 

Denizot A, Arizono M, Nägerl UV, Berry H, De Schutter E (2022) Control of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses. Glia 70(12):2378–2391. https://doi.org/10.1002/glia.24258

Article  PubMed  PubMed Central  CAS  Google Scholar 

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1(3):195–230. https://doi.org/10.1007/BF00961734

Article  PubMed  CAS  Google Scholar 

Di Garbo A (2009) Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. J Biol Phys 35(4):361–382. https://doi.org/10.1007/s10867-009-9143-2

Article  PubMed  PubMed Central  Google Scholar 

Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, Bertram L, Mullin K, Tanzi RE, Blacker D, Albert MS, Sperling RA (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65(3):404–411. https://doi.org/10.1212/01.wnl.0000171450.97464.49

Article  PubMed  CAS  Google Scholar 

Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC (2012) Amyloid beta peptide 1–42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 51(2):95–106. https://doi.org/10.1016/j.ceca.2011.11.008

Article  PubMed  CAS  Google Scholar 

Ferster D, Spruston N (1995) Cracking the neuronal code. Science 270(5237):756–757. https://doi.org/10.1126/science.270.5237.756

Article  PubMed  CAS  Google Scholar 

Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, Ambasudhan R, Talantova M, Lipton SA (2019) Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. Elife 8:e50333. https://doi.org/10.7554/eLife.50333

Article  PubMed  PubMed Central  Google Scholar 

Good TA, Murphy RM (1996) Effect of beta-amyloid block of the fast-inactivating K+ channel on intracellular Ca2+ and excitability in a modeled neuron. Proc Natl Acad Sci USA 93(26):15130–15135. https://doi.org/10.1073/pnas.93.26.15130

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goussakov I, Miller MB, Stutzmann GE (2010) NMDA-mediated Ca2+ influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci: Official J Soc Neurosci 30(36):12128–12137. https://doi.org/10.1523/JNEUROSCI.2474-10.2010

Article  CAS  Google Scholar 

Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB (2001) Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J Comput Neurosci 11(2):121–134. https://doi.org/10.1023/a:1012837415096

Article  PubMed  CAS 

Comments (0)

No login
gif