Shah R, Penmetsa DSL, Thomas R, Mehta DS. Titanium corrosion: implications for dental implants. Eur J Prosthodont Restor Dent. 2016;24(4):171–80. https://doi.org/10.1922/EJPRD_1531Shah10.
Labis V, Bazikyan E, Zhigalina O, Sizova S, Oleinikov V, Khmelenin D, Dyachkova I, Zolotov D, Buzmakov A, Asadchikov V, Khaidukov S, Kozlov I. Assessment of dental implant surface stability at the nanoscale level. Dent Mater. 2022;38(6):924–34. https://doi.org/10.1016/j.dental.2022.03.003.
Article CAS PubMed Google Scholar
van Velzen FJ, Ofec R, Schulten EA, Ten Bruggenkate CM. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clin Oral Implants Res. 2015;26(10):1121–8. https://doi.org/10.1111/clr.12499.
Alghamdi HS, Jansen JA. The development and future of dental implants. Dent Mater J. 2020;39(2):167–72. https://doi.org/10.4012/dmj.2019-140.
Article CAS PubMed Google Scholar
Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent. 1992;68(2):322–6. https://doi.org/10.1016/0022-3913(92)90338-b.
Article CAS PubMed Google Scholar
Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res. 1989;23(1):45–61. https://doi.org/10.1002/jbm.820230105.
Article CAS PubMed Google Scholar
Warashina H, Sakano S, Kitamura S, Yamauchi KI, Yamaguchi J, Ishiguro N, Hasegawa Y. Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted onto murine calvaria. Biomaterials. 2003;24(21):3655–61. https://doi.org/10.1016/s0142-9612(03)00120-0.
Article CAS PubMed Google Scholar
Kuusisto N, Vallittu PK, Lassila LV, Huumonen S. Evaluation of intensity of artefacts in CBCT by radio-opacity of composite simulation models of implants in vitro. Dentomaxillofac Radiol. 2015;44(2):20140157. https://doi.org/10.1259/dmfr.20140157.
Article CAS PubMed Google Scholar
Matta RE, Knapp Giacaman S, Wiesmueller M, Lutz R, Uder M, Wichmann M, Seidel A. Quantitative analysis of zirconia and titanium implant artefacts in three-dimensional virtual models of multi-slice CT and cone beam CT: does scan protocol matter? Dentomaxillofac RadioL. 2023;52(8):20230275. https://doi.org/10.1259/dmfr.20230275.E.
Article PubMed PubMed Central Google Scholar
Freitas DQ, Fontenele RC, Nascimento EHL, Vasconcelos TV, Noujeim M. Influence of acquisition parameters on the magnitude of cone beam computed tomography artifacts. Dentomaxillofac Radiol. 2018;47(8):20180151. https://doi.org/10.1259/dmfr.20180151.
Article PubMed PubMed Central Google Scholar
Sancho-Puchades M, Hämmerle CH, Benic GI. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography. Clin Oral Implants Res. 2015;26(10):1222–8. https://doi.org/10.1111/clr.12438.
Kuzu TE, Kiş HC. 2024. Effect of different cone beam computed tomography settings on artifact production in titanium and zirconia dental implants: An in vitro study. Dent Med Probl. 61(2):233–9. https://doi.org/10.17219/dmp/157233.
Duttenhoefer F, Mertens ME, Vizkelety J, Gremse F, Stadelmann VA, Sauerbier S. Magnetic resonance imaging in zirconia-based dental implantology. Clin Oral Implants Res. 2015;26(10):1195–202. https://doi.org/10.1111/clr.12430.
Yasaka K, Kamiya K, Irie R, Maeda E, Sato J, Ohtomo K. Metal artefact reduction for patients with metallic dental fillings in helical neck computed tomography: comparison of adaptive iterative dose reduction 3D (AIDR 3D), forward-projected model-based iterative reconstruction solution (FIRST) and AIDR 3D with single-energy metal artefact reduction (SEMAR). Dentomaxillofac Radiol. 2016;45(7):20160114. https://doi.org/10.1259/dmfr.20160114.
Article PubMed PubMed Central Google Scholar
Kubo Y, Ito K, Sone M, Nagasawa H, Onishi Y, Umakoshi N, Hasegawa T, Akimoto T, Kusumoto M. Diagnostic value of model-based iterative reconstruction combined with a metal artifact reduction algorithm during CT of the oral cavity. AJNR Am J Neuroradiol. 2020;41(11):2132–8. https://doi.org/10.3174/ajnr.A6767.
Article CAS PubMed PubMed Central Google Scholar
Bongers MN, Schabel C, Thomas C, Raupach R, Notohamiprodjo M, Nikolaou K, Bamberg F. Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants. PLoS ONE. 2015;10(11): e0143584. https://doi.org/10.1371/journal.pone.0143584.
Article CAS PubMed PubMed Central Google Scholar
Schmidt AMA, Grunz JP, Petritsch B, Gruschwitz P, Knarr J, Huflage H, Bley TA, Kosmala A. Combination of iterative metal artifact reduction and virtual monoenergetic reconstruction using split-filter dual-energy CT in patients with dental artifact on head and neck CT. AJR Am J Roentgenol. 2022;218(4):716–27. https://doi.org/10.2214/AJR.21.26772.
Gondim Teixeira PA, Meyer JB, Baumann C, Raymond A, Sirveaux F, Coudane H, Blum A. Total hip prosthesis CT with single-energy projection-based metallic artifact reduction: impact on the visualization of specific periprosthetic soft tissue structures. Skeletal Radiol. 2014;43(9):1237–46. https://doi.org/10.1007/s00256-014-1923-5.
Sonoda A, Nitta N, Ushio N, Nagatani Y, Okumura N, Otani H, Murata K. Evaluation of the quality of CT images acquired with the single energy metal artifact reduction (SEMAR) algorithm in patients with hip and dental prostheses and aneurysm embolization coils. Jpn J Radiol. 2015;33(11):710–6. https://doi.org/10.1007/s11604-015-0478-2.
Article CAS PubMed Google Scholar
Kawahara D, Ozawa S, Yokomachi K, Higaki T, Shiinoki T, Saito A, Kimura T, Nishibuchi I, Takahashi I, Takeuchi Y, Imano N, Kubo K, Mori M, Ohno Y, Murakami Y, Nagata Y. Metal artifact reduction techniques for single energy CT and dual-energy CT with various metal materials. BJR Open. 2019;1(1):20180045. https://doi.org/10.1259/bjro.20180045.
Article PubMed PubMed Central Google Scholar
Agostini A, Borgheresi A, Mari A, Floridi C, Bruno F, Carotti M, Schicchi N, Barile A, Maggi S, Giovagnoni A. Dual-energy CT: theoretical principles and clinical applications. Radiol Med. 2019;124(12):1281–95. https://doi.org/10.1007/s11547-019-01107-8.
Remy-Jardin M, Faivre JB, Pontana F, Molinari F, Tacelli N, Remy J. Thoracic applications of dual energy. Semin Respir Crit Care Med. 2014;35(1):64–73. https://doi.org/10.1055/s-0033-1363452.
Fontenele RC, Nascimento EH, Vasconcelos TV, Noujeim M, Freitas DQ. Magnitude of cone beam CT image artifacts related to zirconium and titanium implants: impact on image quality. Dentomaxillofac Radiol. 2018;47(6):20180021. https://doi.org/10.1259/dmfr.20180021.
Article PubMed PubMed Central Google Scholar
Lin XZ, Miao F, Li JY, Dong HP, Shen Y, Chen KM. High-definition CT Gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr. 2011;35(2):294–7. https://doi.org/10.1097/RCT.0b013e3182058d5c.
Dong Y, Shi AJ, Wu JL, Wang RX, Sun LF, Liu AL, Liu YJ. Metal artifact reduction using virtual monochromatic images for patients with pedicle screws implants on CT. Eur Spine J. 2016;25(6):1754–63. https://doi.org/10.1007/s00586-015-4053-4.
Kuya K, Shinohara Y, Kato A, Sakamoto M, Kurosaki M, Ogawa T. Reduction of metal artifacts due to dental hardware in computed tomography angiography: assessment of the utility of model-based iterative reconstruction. Neuroradiology. 2017;59(3):231–5. https://doi.org/10.1007/s00234-017-1811-5.
Kandavalli SR, Wang Q, Ebrahimi M, Gode C, Djavanroodi F, Attarilar S, Liu S. A brief review on the evolution of metallic dental implants: history, design, and application. Front Mater. 2021;8: 646383. https://doi.org/10.3389/fmats.2021.646383.
Hong DGK, Oh JH. Recent advances in dental implants. Maxillofac Plast Reconstr Surg. 2017;39(1):33. https://doi.org/10.1186/s40902-017-0132-2.
Article PubMed PubMed Central Google Scholar
Alhammadi SH, Burnside G, Milosevic A. Clinical outcomes of single implant-supported crowns versus 3-unit implant-supported fixed dental prosthese
Comments (0)