Effect of Noble Metal (Au and Pt) on Chemical Bath Deposited ZnO Nanorods over Glass and FTO Substrate: Insights into Photo(electro)chemical and Photocatalytic Properties

Arifin M, Roza L, Fauzia V (2019) Bayberry-like Pt nanoparticle decorated ZnO nanorods for the photocatalytic application. Results Phys 15:102678. https://doi.org/10.1016/j.rinp.2019.102678

Article  Google Scholar 

Baldev E, MubarakAli D, Ilavarasi A, Pandiaraj D, Ishack KASS, Thajuddin N (2013) Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf B Biointerfaces 105:207–214. https://doi.org/10.1016/j.colsurfb.2013.01.008

Article  CAS  PubMed  Google Scholar 

Bora T, Kyaw HH, Sarkar S, Pal SK, Dutta J (2011) Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process. Beilstein J Nanotechnol 2:681–690. https://doi.org/10.3762/bjnano.2.73

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bora T, Zoepfl D, Dutta J (2016) Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods. Sci Rep 6:1–10. https://doi.org/10.1038/srep26913

Article  CAS  Google Scholar 

Bulcha B, Leta Tesfaye J, Anatol D, Shanmugam R, Dwarampudi LP, Nagaprasad N, Bhargavi VLN, Krishnaraj R (2021) Synthesis of Zinc Oxide Nanoparticles by Hydrothermal Methods and Spectroscopic Investigation of Ultraviolet Radiation Protective Properties. J Nanomater. https://doi.org/10.1155/2021/8617290

Article  Google Scholar 

Cai J, Ma Z, Wejinya U, Zou M, Liu Y, Zhou H, Meng X (2019) A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors. J Mater Sci 54:5236–5248. https://doi.org/10.1007/s10853-018-03260-3

Article  CAS  Google Scholar 

Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112:269–278. https://doi.org/10.1016/j.jhazmat.2004.05.013

Article  CAS  PubMed  Google Scholar 

Chalangar E, Nur O, Willander M, Gustafsson A, Pettersson H (2021) Synthesis of Vertically Aligned ZnO Nanorods Using Sol-gel Seeding and Colloidal Lithography Patterning. Nanoscale Res Lett. https://doi.org/10.1186/s11671-021-03500-7

Article  PubMed  PubMed Central  Google Scholar 

Chen MT, Ting JM (2006) Sputter deposition of ZnO nanorods/thin-film structures on Si. Thin Solid Films 494:250–254. https://doi.org/10.1016/j.tsf.2005.08.134

Article  CAS  Google Scholar 

Chen X, Wu Z, Liu D, Gao Z (2017) Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Res Lett 12:4–13. https://doi.org/10.1186/s11671-017-1904-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui J (2012) Zinc oxide nanowires. Mater Charact 64:43–52. https://doi.org/10.1016/j.matchar.2011.11.017

Article  CAS  Google Scholar 

Foo KL, Hashim U, Muhammad K, Voon CH (2014) Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res Lett 9:1–10. https://doi.org/10.1186/1556-276X-9-429

Article  CAS  Google Scholar 

Fortunato E, Gonçalves A, Pimentel A, Barquinha P, Gonçalves G, Pereira L, Ferreira I, Martins R (2009) Zinc oxide, a multifunctional material: From material to device applications. Appl Phys A Mater Sci Process 96:197–205. https://doi.org/10.1007/s00339-009-5086-5

Article  CAS  Google Scholar 

Güy N, Ozacar M (2016) The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation. Int J Hydrogen Energy 41:20100–20112. https://doi.org/10.1016/j.ijhydene.2016.07.063

Article  CAS  Google Scholar 

Guziewicz E, Godlewski M, Krajewski T, Wachnicki Ł, Szczepanik A, Kopalko K, Paszkowicz W, Łusakowska E, Kruszewski P, Huby N, Tallarida G, Ferrari S, Guziewicz E, Godlewski M, Krajewski T, Wachnicki Ł, Szczepanik A (2013) ZnO grown by atomic layer deposition : A material for transparent electronics and organic heterojunctions ZnO grown by atomic layer deposition : a material for transparent electronics and organic heterojunctions. J Appl Phys 105:122413. https://doi.org/10.1063/1.3133803

Article  CAS  Google Scholar 

Iwu KO, Strano V, Di Mauro A, Impellizzeri G, Mirabella S (2015) Enhanced quality, growth kinetics, and photocatalysis of ZnO nanowalls prepared by chemical bath deposition. Cryst Growth des 15:4206–4212. https://doi.org/10.1021/acs.cgd.5b00216

Article  CAS  Google Scholar 

Kandjani AE, Tabriz MF, Pourabbas B (2008) Sonochemical synthesis of ZnO nanoparticles: the effect of temperature and sonication power. Mater Res Bull 43:645–654. https://doi.org/10.1016/j.materresbull.2007.04.005

Article  CAS  Google Scholar 

Kazeminezhad I, Sadollahkhani A (2016) Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-016-4284-0

Article  Google Scholar 

Kedem N, Edri E, Kokotov M, Cohen H, Bendikov T, Popovitz-Biro R, Von Huth P, Ginley D, Hodes G (2010) Effect of Sb ions on the morphology of chemical bath-deposited ZnO films and application to nanoporous solar cells. Cryst Growth des 10:4442–4448. https://doi.org/10.1021/cg100636j

Article  CAS  Google Scholar 

Khan MA, Nayan N, Ahmad MK, Fhong SC, Tahir M (2020) ZnO nanowires based schottky contacts of Rh/ZnO interfaces for the enhanced performance of electronic devices. Surf Interfaces 21:100649. https://doi.org/10.1016/j.surfin.2020.100649

Article  CAS  Google Scholar 

Kokotov M, Hodes G (2009) Reliable chemical bath deposition of ZnO films with controllable morphology from ethanolamine-based solutions using KMnO 4 substrate activation. J Mater Chem 19:3847–3854. https://doi.org/10.1039/b821242b

Article  CAS  Google Scholar 

Kokotov M, Biller A, Hodes G (2008) Reproducible chemical bath deposition of ZnO by a one-step method: the importance of “contaminants” in nucleation. Chem Mater 20:4542–4544. https://doi.org/10.1021/cm8011952

Article  CAS  Google Scholar 

Kumar V, Gupta R, Bansal A (2021) Hydrothermal growth of ZnO nanorods for use in dye-sensitized solar cells. ACS Appl Nano Mater 4:6212–6222

Article  CAS  Google Scholar 

Lamba R, Umar A, Mehta SK, Kansal SK (2017) Enhanced visible light driven photocatalytic application of Ag2O decorated ZnO nanorods heterostructures. Sep Purif Technol 183:341–349. https://doi.org/10.1016/j.seppur.2017.03.070

Article  CAS  Google Scholar 

Le TTT, Tran TD (2020) Photocatalytic Degradation of Rhodamine B by C and N Codoped TiO2Nanoparticles under Visible-Light Irradiation. J Chem. https://doi.org/10.1155/2020/4310513

Article  Google Scholar 

Lee SY, Kang D, Jeong S, Do HT, Kim JH (2020) Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega 5:4233–4241. https://doi.org/10.1021/acsomega.9b04127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin J, Yu H, Cheng C, Chen Y-F (2006) Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. NANOTECHNOLOGY Nanotechnol 17:4391–4394. https://doi.org/10.1088/0957-4484/17/17/017

Article  Google Scholar 

Liu H, Feng J, Jie W (2017) A review of noble metal (Pd, Ag, Pt, Au)–zinc oxide nanocomposites: synthesis, structures and applications. J Mater Sci: Mater Electron 28:16585–16597. https://doi.org/10.1007/s10854-017-7612-0

Article  CAS  Google Scholar 

Mondal A, Lata A, Prabhakaran A, Gupta S (2021) Nanometer-thick [(FPEA)2PbX4; X = i and Br] 2D halide perovskite based thin films for pollutant detection and nonconventional photocatalytic degradation. Mater Adv 2:5712–5722. https://doi.org/10.1039/d1ma00561h

Article  CAS  Google Scholar 

Moon S, Yoo J, Lee W, Lee K (2023) Enhancement of electrochemical detection performance towards 2,4,6-trinitrotoluene by a bottom layer of ZnO nanorod arrays. Heliyon 9:e15880

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morales-Flores N, Pal U, Sánchez Mora E (2011) Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Appl Catal A Gen 394:269–275. https://doi.org/10.1016/j.apcata.2011.01.011

Article  CAS  Google Scholar 

More PB, Bansode SB, Aleksandrova M et al (2023) Synthesis of ZnO Thin Films Using Chemical Bath Deposition and Investigation of Physicochemical Properties. ES Energy Environ 22:983

Comments (0)

No login
gif