Arifin M, Roza L, Fauzia V (2019) Bayberry-like Pt nanoparticle decorated ZnO nanorods for the photocatalytic application. Results Phys 15:102678. https://doi.org/10.1016/j.rinp.2019.102678
Baldev E, MubarakAli D, Ilavarasi A, Pandiaraj D, Ishack KASS, Thajuddin N (2013) Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf B Biointerfaces 105:207–214. https://doi.org/10.1016/j.colsurfb.2013.01.008
Article CAS PubMed Google Scholar
Bora T, Kyaw HH, Sarkar S, Pal SK, Dutta J (2011) Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process. Beilstein J Nanotechnol 2:681–690. https://doi.org/10.3762/bjnano.2.73
Article CAS PubMed PubMed Central Google Scholar
Bora T, Zoepfl D, Dutta J (2016) Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods. Sci Rep 6:1–10. https://doi.org/10.1038/srep26913
Bulcha B, Leta Tesfaye J, Anatol D, Shanmugam R, Dwarampudi LP, Nagaprasad N, Bhargavi VLN, Krishnaraj R (2021) Synthesis of Zinc Oxide Nanoparticles by Hydrothermal Methods and Spectroscopic Investigation of Ultraviolet Radiation Protective Properties. J Nanomater. https://doi.org/10.1155/2021/8617290
Cai J, Ma Z, Wejinya U, Zou M, Liu Y, Zhou H, Meng X (2019) A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors. J Mater Sci 54:5236–5248. https://doi.org/10.1007/s10853-018-03260-3
Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112:269–278. https://doi.org/10.1016/j.jhazmat.2004.05.013
Article CAS PubMed Google Scholar
Chalangar E, Nur O, Willander M, Gustafsson A, Pettersson H (2021) Synthesis of Vertically Aligned ZnO Nanorods Using Sol-gel Seeding and Colloidal Lithography Patterning. Nanoscale Res Lett. https://doi.org/10.1186/s11671-021-03500-7
Article PubMed PubMed Central Google Scholar
Chen MT, Ting JM (2006) Sputter deposition of ZnO nanorods/thin-film structures on Si. Thin Solid Films 494:250–254. https://doi.org/10.1016/j.tsf.2005.08.134
Chen X, Wu Z, Liu D, Gao Z (2017) Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Res Lett 12:4–13. https://doi.org/10.1186/s11671-017-1904-4
Article CAS PubMed PubMed Central Google Scholar
Cui J (2012) Zinc oxide nanowires. Mater Charact 64:43–52. https://doi.org/10.1016/j.matchar.2011.11.017
Foo KL, Hashim U, Muhammad K, Voon CH (2014) Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res Lett 9:1–10. https://doi.org/10.1186/1556-276X-9-429
Fortunato E, Gonçalves A, Pimentel A, Barquinha P, Gonçalves G, Pereira L, Ferreira I, Martins R (2009) Zinc oxide, a multifunctional material: From material to device applications. Appl Phys A Mater Sci Process 96:197–205. https://doi.org/10.1007/s00339-009-5086-5
Güy N, Ozacar M (2016) The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation. Int J Hydrogen Energy 41:20100–20112. https://doi.org/10.1016/j.ijhydene.2016.07.063
Guziewicz E, Godlewski M, Krajewski T, Wachnicki Ł, Szczepanik A, Kopalko K, Paszkowicz W, Łusakowska E, Kruszewski P, Huby N, Tallarida G, Ferrari S, Guziewicz E, Godlewski M, Krajewski T, Wachnicki Ł, Szczepanik A (2013) ZnO grown by atomic layer deposition : A material for transparent electronics and organic heterojunctions ZnO grown by atomic layer deposition : a material for transparent electronics and organic heterojunctions. J Appl Phys 105:122413. https://doi.org/10.1063/1.3133803
Iwu KO, Strano V, Di Mauro A, Impellizzeri G, Mirabella S (2015) Enhanced quality, growth kinetics, and photocatalysis of ZnO nanowalls prepared by chemical bath deposition. Cryst Growth des 15:4206–4212. https://doi.org/10.1021/acs.cgd.5b00216
Kandjani AE, Tabriz MF, Pourabbas B (2008) Sonochemical synthesis of ZnO nanoparticles: the effect of temperature and sonication power. Mater Res Bull 43:645–654. https://doi.org/10.1016/j.materresbull.2007.04.005
Kazeminezhad I, Sadollahkhani A (2016) Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-016-4284-0
Kedem N, Edri E, Kokotov M, Cohen H, Bendikov T, Popovitz-Biro R, Von Huth P, Ginley D, Hodes G (2010) Effect of Sb ions on the morphology of chemical bath-deposited ZnO films and application to nanoporous solar cells. Cryst Growth des 10:4442–4448. https://doi.org/10.1021/cg100636j
Khan MA, Nayan N, Ahmad MK, Fhong SC, Tahir M (2020) ZnO nanowires based schottky contacts of Rh/ZnO interfaces for the enhanced performance of electronic devices. Surf Interfaces 21:100649. https://doi.org/10.1016/j.surfin.2020.100649
Kokotov M, Hodes G (2009) Reliable chemical bath deposition of ZnO films with controllable morphology from ethanolamine-based solutions using KMnO 4 substrate activation. J Mater Chem 19:3847–3854. https://doi.org/10.1039/b821242b
Kokotov M, Biller A, Hodes G (2008) Reproducible chemical bath deposition of ZnO by a one-step method: the importance of “contaminants” in nucleation. Chem Mater 20:4542–4544. https://doi.org/10.1021/cm8011952
Kumar V, Gupta R, Bansal A (2021) Hydrothermal growth of ZnO nanorods for use in dye-sensitized solar cells. ACS Appl Nano Mater 4:6212–6222
Lamba R, Umar A, Mehta SK, Kansal SK (2017) Enhanced visible light driven photocatalytic application of Ag2O decorated ZnO nanorods heterostructures. Sep Purif Technol 183:341–349. https://doi.org/10.1016/j.seppur.2017.03.070
Le TTT, Tran TD (2020) Photocatalytic Degradation of Rhodamine B by C and N Codoped TiO2Nanoparticles under Visible-Light Irradiation. J Chem. https://doi.org/10.1155/2020/4310513
Lee SY, Kang D, Jeong S, Do HT, Kim JH (2020) Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega 5:4233–4241. https://doi.org/10.1021/acsomega.9b04127
Article CAS PubMed PubMed Central Google Scholar
Lin J, Yu H, Cheng C, Chen Y-F (2006) Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. NANOTECHNOLOGY Nanotechnol 17:4391–4394. https://doi.org/10.1088/0957-4484/17/17/017
Liu H, Feng J, Jie W (2017) A review of noble metal (Pd, Ag, Pt, Au)–zinc oxide nanocomposites: synthesis, structures and applications. J Mater Sci: Mater Electron 28:16585–16597. https://doi.org/10.1007/s10854-017-7612-0
Mondal A, Lata A, Prabhakaran A, Gupta S (2021) Nanometer-thick [(FPEA)2PbX4; X = i and Br] 2D halide perovskite based thin films for pollutant detection and nonconventional photocatalytic degradation. Mater Adv 2:5712–5722. https://doi.org/10.1039/d1ma00561h
Moon S, Yoo J, Lee W, Lee K (2023) Enhancement of electrochemical detection performance towards 2,4,6-trinitrotoluene by a bottom layer of ZnO nanorod arrays. Heliyon 9:e15880
Article CAS PubMed PubMed Central Google Scholar
Morales-Flores N, Pal U, Sánchez Mora E (2011) Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Appl Catal A Gen 394:269–275. https://doi.org/10.1016/j.apcata.2011.01.011
More PB, Bansode SB, Aleksandrova M et al (2023) Synthesis of ZnO Thin Films Using Chemical Bath Deposition and Investigation of Physicochemical Properties. ES Energy Environ 22:983
Comments (0)