Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, et al. Heart disease and stroke statistics: a report of US and global data from the American heart association. Circulation. 2025;151(8):e41–e660.
Summary of Global Burden of Disease Study Methods. J Am Coll Cardiol. 2022;80:2372–425.
Vaduganathan M, Mensah GA, Turco JV, Fuster V. Roth GA. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. Elsevier Inc.; 2022. p. 2361–71.
Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4(1):98–108.
Joladarashi D, Thej C, Mallaredy V, Magadum A, Cimini M, Gonzalez C, et al. GPC3-mediated metabolic rewiring of diabetic mesenchymal stromal cells enhances their cardioprotective functions via PKM2 activation. iScience. 2024;27(10):111021.
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem Cell-Based Therapy in Cardiac Repair after Myocardial Infarction: Promise, Challenges, and Future Directions. J Mol Cell Cardiol Academic Press. 2024;188:1–14.
Tang JN, Cores J, Huang K, Cui XL, Luo L, Zhang JY, et al. Concise Review: Is Cardiac Cell Therapy Dead? Embarrassing Trial Outcomes and New Directions for the Future. Stem Cells Transl Med John Wiley and Sons Ltd. 2018;7(4):354–9.
Fang YH, Wang SPH, Chang HY, Yang PJ, Liu PY, Liu YW. Immunogenicity in stem cell therapy for cardiac regeneration. Acta Cardiol Sin. 2020;36(6):588–94.
PubMed PubMed Central Google Scholar
Gu Y, Li T, Ding Y, Sun L, Tu T, Zhu W, et al. Changes in Mesenchymal Stem Cells Following Long-Term Culture in Vitro. Mol Med Rep. 2016;13:5207–15.
Article CAS PubMed Google Scholar
Liu C, Han D, Liang P, Li Y, Cao F. The current dilemma and breakthrough of stem cell therapy in ischemic heart disease. Front Cell Dev Biol. 2021;9.
Hussain MWA, Jahangir S, Ghosh B, Yesmin F, Anis A, Satil SN, et al. Exosomes for Regulation of Immune Responses and Immunotherapy. J Nanotheranostics. 2022;3:55–85.
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle Formation During Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (exosomes). J Biol Chem. 1987;262:9412–20.
Article CAS PubMed Google Scholar
Chen YF, Luh F, Ho YS, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. BioMed Central Ltd: J Biomed Sci; 2024.
Zhang K, Cheng K. Stem Cell-Derived Exosome Versus Stem Cell Therapy. Nat Rev Bioeng. 2023;1:608–9.
Saha P, Datta S, Ghosh S, Samanta A, Ghosh P. Sinha D. Bioengineering of extracellular vesicles: Exosome-based next-generation therapeutic strategy in cancer. Bioengineering; 2021. p. 8.
Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, et al. Exosomes in Human Semen Carry a Distinctive Repertoire of Small Non-Coding Rnas with Potential Regulatory Functions. Nucleic Acids Res. 2014;42:7290–304.
Article CAS PubMed PubMed Central Google Scholar
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1):75.
Article PubMed PubMed Central Google Scholar
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. BioMed Central Ltd: Cell Communication and Signaling; 2021.
Xia Z, Qing B, Wang W, Gu L, Chen H, Yuan Y. Formation, Contents, Functions of Exosomes and their Potential in Lung Cancer Diagnostics and Therapeutics. Thorac Cancer. 2021;12(23):3088–100.
Article CAS PubMed PubMed Central Google Scholar
Chahar HS, Bao X, Casola A. Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses. Viruses. 2015;7(6):3204–25.
Article CAS PubMed PubMed Central Google Scholar
Jahn R, Sudhof TC. Membrane fusion and exocytosis. Annu Rev Biochem. 1999;68:863–911.
Article CAS PubMed Google Scholar
Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as Mediators of Intercellular Crosstalk in Metabolism. Cell Metab. 2021;33(9):1744–62.
Article CAS PubMed PubMed Central Google Scholar
Wang S, Wu R, Chen Q, Liu T, Li L. Exosomes derived from TNF-α-treated bone marrow mesenchymal stem cells ameliorate myocardial infarction injury in mice. Organogenesis. 2024;20(1)
Liu X, Li X, Zhu W, Zhang Y, Hong Y, Liang X, et al. Exosomes from Mesenchymal Stem Cells Overexpressing Mif Enhance Myocardial Repair. J Cell Physiol. 2020;235:8010–22.
Article CAS PubMed Google Scholar
Wang XY, Wang JJ, Zhang YX, Yu YS, Shen ZY. A fibrin patch loaded with mesenchymal stem cells-derived exosomes improves cardiac functions after myocardial infarction. Colloid Interfac Sci. 2024;59.
Gunasekaran M, Mishra R, Saha P, Morales D, Cheng WC, Jayaraman AR, et al. Comparative efficacy and mechanism of action of cardiac progenitor cells after cardiac injury. iScience. 2022;25(8):104656.
Gao L, Wang L, Wei Y, Krishnamurthy P, Walcott GP, Menasché P, et al. M Y O C A R D I A L I N F A R C T I O N Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Med: Sci. Transl; 2020.
Li J, Sun S, Zhu D, Mei X, Lyu Y, Huang K, et al. Inhalable Stem Cell Exosomes Promote Heart Repair after Myocardial Infarction. Circulation. 2024;150:710–23.
Article CAS PubMed Google Scholar
Ahmad Shiekh P, Anwar Mohammed S, Gupta S, Das A, Meghwani H, Kumar Maulik S, et al. Oxygen Releasing and Antioxidant Breathing Cardiac Patch Delivering Exosomes Promotes Heart Repair after Myocardial Infarction. Chem Eng J. 2022;428:132490.
Tan X, Zhang J, Heng Y, Chen L, Wang Y, Wu S, et al. Locally Delivered Hydrogels with Controlled Release of Nanoscale Exosomes Promote Cardiac Repair after Myocardial Infarction. J Control Release. 2024;368:303–17.
Article CAS PubMed Google Scholar
Wang M, Li C, Liu Y, Jin Y, Yu Y, Tan X, et al. The effect of macrophages and their exosomes in ischemic heart disease. Front Immunol. 2024;15:1402468.
Article CAS PubMed PubMed Central Google Scholar
He X, Liu S, Zhang Z, Liu Q, Dong J, Lin Z, et al. M1 macrophage-derived exosomes inhibit cardiomyocyte proliferation through delivering miR-155. BMC Cardiovasc Disord. 2024;24(1):365.
Article CAS PubMed PubMed Central Google Scholar
Guo HZ, Li ZY, Xiao B, Huang RC. M2 macrophage-derived exosomes promote angiogenesis and improve cardiac function after myocardial infarction. Biol Direct. 2024;19(1).
Liu N, Xie L, Xiao P, Chen X, Kong W, Lou Q, et al. Cardiac Fibroblasts Secrete Exosome Microrna to Suppress Cardiomyocyte Pyroptosis in Myocardial Ischemia/Reperfusion Injury. Mol Cell Biochem. 2022;477:1249–60.
Article CAS PubMed PubMed Central Google Scholar
Røsand Ø, Høydal MA. Cardiac exosomes in ischemic heart disease—A narrative review. Diagnostics: Multidisciplinary Digital Publishing Institute (MDPI); 2021.
Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, et al. Cardiac Progenitor Cell-Derived Exosomes Prevent Cardiomyocytes Apoptosis Through Exosomal Mir-21 By Targeting PDCD4. Cell Death Dis. 2016;7(6):e2277.
Article CAS PubMed PubMed Central Google Scholar
Joladarashi D, Garikipati VNS, Thandavarayan RA, Verma SK, Mackie AR, Khan M, et al. Enhanced Cardiac Regenerative Ability of Stem Cells After Ischemia-Reperfusion Injury: Role of Human CD34+ Cells Deficient in MicroRNA-377. J Am Coll Cardiol. 2015;66:2214–26.
Article CAS PubMed PubMed Central Google Scholar
Johnson T, Zhao L, Manuel G, Taylor H, Liu D. Approaches to Therapeutic Angiogenesis for Ischemic Heart Disease. J Mol Med. 2019;97(2):141–51.
Article CAS PubMed Google Scholar
Shafei S, Khanmohammadi M, Ghanbari H, Nooshabadi VT, Tafti SHA, Rabbani S, et al. Effectiveness of Exosome Mediated Mir-126 And Mir-146a Delivery on Cardiac Tissue Regeneration. Cell Tissue Res. 2022;390:71–92.
Article CAS PubMed Google Scholar
Wang T, Li T, Niu X, Hu L, Chen
Comments (0)