Bioengineering Approaches to In Vitro Modeling of Genetic and Acquired Cardiac Diseases

Di Cesare M, Perel P, Taylor S, Kabudula C, Bixby H, Gaziano TA, et al. The heart of the world. Glob Heart. 2024;19(1):11.

Article  PubMed  PubMed Central  Google Scholar 

Chong B, Jayabaskaran J, Jauhari SM, Chan SP, Goh R, Kueh MTW, et al. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur J Prevent Cardiol. 2024;1–15.

Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell. 2012;148(6):1242–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao Y, Jin H, Huang X, Gong F, Fu L. Editorial: acquired heart disease in children: pathogenesis, diagnosis and management. Front Pediatr. 2021;9:725670.

Article  PubMed  PubMed Central  Google Scholar 

Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, et al. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials. 2019;198:3–26.

Article  CAS  PubMed  Google Scholar 

MacRae CA. Closing the “phenotype gap” in precision medicine: improving what we measure to understand complex disease mechanisms. Mamm Genome. 2019;30(7–8):201–11.

Article  PubMed  Google Scholar 

Rosellini E, Boccaccini AR, Quaini F, Zhang YS. Editorial: Bioengineering of biomimetic microenvironments for cardiac tissue engineering. Front Bioeng Biotechnol. 2023;11:1339120.

Article  PubMed  PubMed Central  Google Scholar 

Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao M-L, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation. 2017;135(19):1832–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serpooshan V, Ruiz-Lozano P. Ultra-rapid manufacturing of engineered epicardial substitute to regenerate cardiac tissue following acute ischemic injury. Methods Mol Biol. 2014;1210:239–48.

Article  CAS  PubMed  Google Scholar 

Chen X, Liu S, Han M, Long M, Li T, Hu L, et al. Engineering cardiac tissue for advanced heart-on-a-chip platforms. Adv Healthcare Mater. 2024;13(1):2301338.

Article  CAS  Google Scholar 

Hoes MF, Bomer N, van der Meer P. Concise review: the current state of human in vitro cardiac disease modeling: a focus on gene editing and tissue engineering. Stem Cells Transl Med. 2019;8(1):66–74.

Article  PubMed  Google Scholar 

Sun W, Lee J, Zhang S, Benyshek C, Dokmeci MR, Khademhosseini A. Engineering precision medicine. Adv Sci. 2019;6(1):1801039.

Article  Google Scholar 

Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Tao R, Campbell KF, Carvalho JL, Ruiz EC, Kim GC, et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun. 2019;10(1):2238.

Article  PubMed  PubMed Central  Google Scholar 

Abutaleb NO, Truskey GA. Differentiation and characterization of human iPSC-derived vascular endothelial cells under physiological shear stress. STAR Protocols. 2021;2(2):100394.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang L, Geng Z, Nickel T, Johnson C, Gao L, Dutton J, et al. Differentiation of human induced-pluripotent stem cells into smooth-muscle cells: Two novel protocols. PLoS ONE. 2016;11(1):e0147155.

Article  PubMed  PubMed Central  Google Scholar 

Shen M, Zhao SR, Khokhar Y, Li L, Zhou Y, Liu C, et al. Protocol to generate cardiac pericytes from human induced pluripotent stem cells. STAR Protoc. 2023;4(2):102256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klepikova A, Nenasheva T, Sheveleva O, Protasova E, Antonov D, Gainullina A, et al. iPSC-derived macrophages: The differentiation protocol affects cell immune characteristics and differentiation trajectories. Int J Mol Sci. 2022;23(24):16087.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc. 2022;3(3):101560.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu X, Jin K, Bais AS, Zhu W, Yagi H, Feinstein TN, et al. Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell. 2022;29(5):840-55.e7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nasilli G, Yiangou L, Palandri C, Cerbai E, Davis RP, Verkerk AO, et al. Beneficial effects of chronic mexiletine treatment in a human model of SCN5A overlap syndrome. EP Europace. 2023;25(6):euad154.

Article  Google Scholar 

Buikema JW, Lee S, Goodyer WR, Maas RG, Chirikian O, Li G, et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell. 2020;27(1):50-63.e5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deogharia M, Venegas-Zamora L, Agrawal A, Shi M, Jain AK, McHugh KJ, et al. Histone demethylase KDM5 regulates cardiomyocyte maturation by promoting fatty acid oxidation, oxidative phosphorylation, and myofibrillar organization. Cardiovasc Res. 2024;120(6):630–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kriedemann N, Triebert W, Teske J, Mertens M, Franke A, Ullmann K, et al. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat Protoc. 2024;19(7):1911–39.

Article  CAS  PubMed  Google Scholar 

Prondzynski M, Berkson P, Trembley MA, Tharani Y, Shani K, Bortolin RH, et al. Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems. Nat Commun. 2024;15(1):5929.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikryukov AA, Mazine A, Wei B, Yang D, Miao Y, Gu M, et al. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell. 2021;28(1):96-111.e7.

Article  CAS  PubMed  Google Scholar 

Liu CZ, Prasad A, Jadhav B, Liu Y, Gu M, Sharp AJ, et al. Feeder-free generation and characterization of endocardial and cardiac valve cells from human pluripotent stem cells. iScience. 2024;27(1):108599.

Article  CAS  PubMed  Google Scholar 

Wiesinger A, Li J, Fokkert L, Bakker P, Verkerk AO, Christoffels VM, et al. A single cell transcriptional roadmap of human pacemaker cell differentiation. eLife. 2022;11:e76781.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Darche FF, Ullrich ND, Huang Z, Koenen M, Rivinius R, Frey N, et al. Improved generation of human induced pluripotent stem cell-derived cardiac pacemaker cells using novel differentiation protocols. Int J Mol Sci. 2022;23(13):7318.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Sen P, Hamers J, Sittig T, Woestenburg B, Moretti A, et al. Retinoic acid modulation guides human-induced pluripotent stem cell differentiation towards left or right ventricle-like cardiomyocytes. Stem Cell Res Ther. 2024;15(1):184.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif