Di Cesare M, Perel P, Taylor S, Kabudula C, Bixby H, Gaziano TA, et al. The heart of the world. Glob Heart. 2024;19(1):11.
Article PubMed PubMed Central Google Scholar
Chong B, Jayabaskaran J, Jauhari SM, Chan SP, Goh R, Kueh MTW, et al. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur J Prevent Cardiol. 2024;1–15.
Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell. 2012;148(6):1242–57.
Article CAS PubMed PubMed Central Google Scholar
Liao Y, Jin H, Huang X, Gong F, Fu L. Editorial: acquired heart disease in children: pathogenesis, diagnosis and management. Front Pediatr. 2021;9:725670.
Article PubMed PubMed Central Google Scholar
Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, et al. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials. 2019;198:3–26.
Article CAS PubMed Google Scholar
MacRae CA. Closing the “phenotype gap” in precision medicine: improving what we measure to understand complex disease mechanisms. Mamm Genome. 2019;30(7–8):201–11.
Rosellini E, Boccaccini AR, Quaini F, Zhang YS. Editorial: Bioengineering of biomimetic microenvironments for cardiac tissue engineering. Front Bioeng Biotechnol. 2023;11:1339120.
Article PubMed PubMed Central Google Scholar
Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao M-L, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation. 2017;135(19):1832–47.
Article CAS PubMed PubMed Central Google Scholar
Serpooshan V, Ruiz-Lozano P. Ultra-rapid manufacturing of engineered epicardial substitute to regenerate cardiac tissue following acute ischemic injury. Methods Mol Biol. 2014;1210:239–48.
Article CAS PubMed Google Scholar
Chen X, Liu S, Han M, Long M, Li T, Hu L, et al. Engineering cardiac tissue for advanced heart-on-a-chip platforms. Adv Healthcare Mater. 2024;13(1):2301338.
Hoes MF, Bomer N, van der Meer P. Concise review: the current state of human in vitro cardiac disease modeling: a focus on gene editing and tissue engineering. Stem Cells Transl Med. 2019;8(1):66–74.
Sun W, Lee J, Zhang S, Benyshek C, Dokmeci MR, Khademhosseini A. Engineering precision medicine. Adv Sci. 2019;6(1):1801039.
Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855–60.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Tao R, Campbell KF, Carvalho JL, Ruiz EC, Kim GC, et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun. 2019;10(1):2238.
Article PubMed PubMed Central Google Scholar
Abutaleb NO, Truskey GA. Differentiation and characterization of human iPSC-derived vascular endothelial cells under physiological shear stress. STAR Protocols. 2021;2(2):100394.
Article CAS PubMed PubMed Central Google Scholar
Yang L, Geng Z, Nickel T, Johnson C, Gao L, Dutton J, et al. Differentiation of human induced-pluripotent stem cells into smooth-muscle cells: Two novel protocols. PLoS ONE. 2016;11(1):e0147155.
Article PubMed PubMed Central Google Scholar
Shen M, Zhao SR, Khokhar Y, Li L, Zhou Y, Liu C, et al. Protocol to generate cardiac pericytes from human induced pluripotent stem cells. STAR Protoc. 2023;4(2):102256.
Article CAS PubMed PubMed Central Google Scholar
Klepikova A, Nenasheva T, Sheveleva O, Protasova E, Antonov D, Gainullina A, et al. iPSC-derived macrophages: The differentiation protocol affects cell immune characteristics and differentiation trajectories. Int J Mol Sci. 2022;23(24):16087.
Article CAS PubMed PubMed Central Google Scholar
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc. 2022;3(3):101560.
Article CAS PubMed PubMed Central Google Scholar
Xu X, Jin K, Bais AS, Zhu W, Yagi H, Feinstein TN, et al. Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell. 2022;29(5):840-55.e7.
Article CAS PubMed PubMed Central Google Scholar
Nasilli G, Yiangou L, Palandri C, Cerbai E, Davis RP, Verkerk AO, et al. Beneficial effects of chronic mexiletine treatment in a human model of SCN5A overlap syndrome. EP Europace. 2023;25(6):euad154.
Buikema JW, Lee S, Goodyer WR, Maas RG, Chirikian O, Li G, et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell. 2020;27(1):50-63.e5.
Article CAS PubMed PubMed Central Google Scholar
Deogharia M, Venegas-Zamora L, Agrawal A, Shi M, Jain AK, McHugh KJ, et al. Histone demethylase KDM5 regulates cardiomyocyte maturation by promoting fatty acid oxidation, oxidative phosphorylation, and myofibrillar organization. Cardiovasc Res. 2024;120(6):630–43.
Article CAS PubMed PubMed Central Google Scholar
Kriedemann N, Triebert W, Teske J, Mertens M, Franke A, Ullmann K, et al. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat Protoc. 2024;19(7):1911–39.
Article CAS PubMed Google Scholar
Prondzynski M, Berkson P, Trembley MA, Tharani Y, Shani K, Bortolin RH, et al. Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems. Nat Commun. 2024;15(1):5929.
Article CAS PubMed PubMed Central Google Scholar
Mikryukov AA, Mazine A, Wei B, Yang D, Miao Y, Gu M, et al. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell. 2021;28(1):96-111.e7.
Article CAS PubMed Google Scholar
Liu CZ, Prasad A, Jadhav B, Liu Y, Gu M, Sharp AJ, et al. Feeder-free generation and characterization of endocardial and cardiac valve cells from human pluripotent stem cells. iScience. 2024;27(1):108599.
Article CAS PubMed Google Scholar
Wiesinger A, Li J, Fokkert L, Bakker P, Verkerk AO, Christoffels VM, et al. A single cell transcriptional roadmap of human pacemaker cell differentiation. eLife. 2022;11:e76781.
Article CAS PubMed PubMed Central Google Scholar
Darche FF, Ullrich ND, Huang Z, Koenen M, Rivinius R, Frey N, et al. Improved generation of human induced pluripotent stem cell-derived cardiac pacemaker cells using novel differentiation protocols. Int J Mol Sci. 2022;23(13):7318.
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Sen P, Hamers J, Sittig T, Woestenburg B, Moretti A, et al. Retinoic acid modulation guides human-induced pluripotent stem cell differentiation towards left or right ventricle-like cardiomyocytes. Stem Cell Res Ther. 2024;15(1):184.
Comments (0)