Arnold, M., Morgan, E., Rumgay, H., et al. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15–23. https://doi.org/10.1016/j.breast.2022.08.010
Article PubMed PubMed Central Google Scholar
Goenka, A., Khan, F., Verma, B., et al. (2023). Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Communications, 43, 525–561. https://doi.org/10.1002/cac2.12416
Article PubMed PubMed Central Google Scholar
Jin, M.-Z., & Jin, W.-L. (2020). The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted Therapy, 5, 166. https://doi.org/10.1038/s41392-020-00280-x
Article PubMed PubMed Central Google Scholar
Akinsipe, T., Mohamedelhassan, R., Akinpelu, A., et al. (2024). Cellular interactions in tumor microenvironment during breast cancer progression: New frontiers and implications for novel therapeutics. Frontiers in Immunology, 15,. https://doi.org/10.3389/fimmu.2024.1302587
Yan, X., Xie, Y., Yang, F., et al. (2021). Comprehensive description of the current breast cancer microenvironment advancements via single-cell analysis. Journal of Experimental & Clinical Cancer Research, 40, 142. https://doi.org/10.1186/s13046-021-01949-z
Mehraj, U., Dar, A. H., Wani, N. A., & Mir, M. A. (2021). Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemotherapy and Pharmacology, 87, 147–158. https://doi.org/10.1007/s00280-020-04222-w
Kular, L., Pakradouni, J., Kitabgi, P., et al. (2011). The CCN family: A new class of inflammation modulators? Biochimie, 93, 377–388. https://doi.org/10.1016/j.biochi.2010.11.010
Article CAS PubMed Google Scholar
Bradham, D. M., Igarashi, A., Potter, R. L., & Grotendorst, G. R. (1991). Connective tissue growth factor: A cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. Journal of Cell Biology, 114, 1285–1294. https://doi.org/10.1083/jcb.114.6.1285
Article CAS PubMed Google Scholar
Wells, J. E., Howlett, M., Cole, C. H., & Kees, U. R. (2015). Deregulated expression of connective tissue growth factor ( CTGF / CCN2) is linked to poor outcome in human cancer. International Journal of Cancer, 137, 504–511. https://doi.org/10.1002/ijc.28972
Article CAS PubMed Google Scholar
Zeng, H., Yang, Z., Xu, N., et al. (2017). Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling. Cell Death & Disease, 8, e2885–e2885. https://doi.org/10.1038/cddis.2017.248
Yin, D., Chen, W., O’Kelly, J., et al. (2010). Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. International Journal of Cancer, 127, 2257–2267. https://doi.org/10.1002/ijc.25257
Article CAS PubMed PubMed Central Google Scholar
Lin, B.-R., Chang, C.-C., Che, T.-F., et al. (2005). Connective tissue growth factor inhibits metastasis and acts as an independent prognostic marker in colorectal cancer. Gastroenterology, 128, 9–23. https://doi.org/10.1053/j.gastro.2004.10.007
Article CAS PubMed Google Scholar
Deng, Y.-Z., Chen, P.-P., Wang, Y., et al. (2007). Connective tissue growth factor is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenicity through β-catenin-T-cell factor/Lef signaling. Journal of Biological Chemistry, 282, 36571–36581. https://doi.org/10.1074/jbc.M704141200
Article CAS PubMed Google Scholar
de Bruijn, I., Kundra, R., Mastrogiacomo, B., et al. (2023). Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Research, 83, 3861–3867. https://doi.org/10.1158/0008-5472.CAN-23-0816
Article PubMed PubMed Central Google Scholar
Tang, Z., Kang, B., Li, C., et al. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47, W556–W560. https://doi.org/10.1093/nar/gkz430
Article CAS PubMed PubMed Central Google Scholar
Li, T., Fu, J., Zeng, Z., et al. (2020). TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 48, W509–W514. https://doi.org/10.1093/nar/gkaa407
Article CAS PubMed PubMed Central Google Scholar
Kim, H., Son, S., Ko, Y., & Shin, I. (2021). CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene, 40, 2667–2681. https://doi.org/10.1038/s41388-021-01731-7
Article CAS PubMed Google Scholar
Chen, P.-S., Wang, M.-Y., Wu, S.-N., et al. (2007). CTGF enhances the motility of breast cancer cells via an integrin-αvβ3–ERK1/2-dependent S100A4-upregulated pathway. Journal of Cell Science, 120, 2053–2065. https://doi.org/10.1242/jcs.03460
Article CAS PubMed Google Scholar
Chien, W., O’Kelly, J., Lu, D., et al. (2011). Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis. International Journal of Oncology, 38, 1741–1747. https://doi.org/10.3892/ijo.2011.985
Article CAS PubMed Google Scholar
Wang, M. Y., Chen, P. S., Prakash, E., et al. (2009). Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and clap1. Cancer Research, 69, 3482–3491. https://doi.org/10.1158/0008-5472.CAN-08-2524
Article CAS PubMed Google Scholar
Arnott, J. A., Lambi, A. G., Mundy, C., et al. (2011). The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Critical Reviews in Eukaryotic Gene Expression, 21, 43–69. https://doi.org/10.1615/CritRevEukarGeneExpr.v21.i1.40
Article CAS PubMed PubMed Central Google Scholar
Li, J., Ye, L., Owen, S., et al. (2015). Emerging role of CCN family proteins in tumorigenesis and cancer metastasis (Review). International Journal of Molecular Medicine, 36, 1451–1463. https://doi.org/10.3892/ijmm.2015.2390
Article CAS PubMed PubMed Central Google Scholar
Aoyama, E., Hattori, T., Hoshijima, M., et al. (2009). N-terminal domains of CCN family 2/connective tissue growth factor bind to aggrecan. Biochemical Journal, 420, 413–420. https://doi.org/10.1042/BJ20081991
Article CAS PubMed Google Scholar
Qin, Y., Wu, G., Jin, J., et al. (2023). A fully human connective tissue growth factor blocking monoclonal antibody ameliorates experimental rheumatoid arthritis through inhibiting angiogenesis. BMC Biotechnology, 23, 6. https://doi.org/10.1186/s12896-023-00776-8
Article CAS PubMed PubMed Central Google Scholar
Zaykov, V., & Chaqour, B. (2021). The CCN2/CTGF interactome: An approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal, 15, 567–580. https://doi.org/10.1007/s12079-021-00650-2
Article CAS PubMed PubMed Central Google Scholar
Leask, A., & Abraham, D. J. (2006). All in the CCN family: Essential matricellular signaling modulators emerge from the bunker. Journal of Cell Science, 119, 4803–4810. https://doi.org/10.1242/jcs.03270
Article CAS PubMed Google Scholar
Hahn, A., Heusinger-Ribeiro, J., Lanz, T., et al. (2000). Induction of connective tissue growth factor by activation of heptahelical receptors. Journal of Biological Chemistry, 275, 37429–37435. https://doi.org/10.1074/jbc.M000976200
Article CAS PubMed Google Scholar
Huang, B.-L., Dornbach, L. M., & Lyons, K. M. (2007). The 5′ untranslated regions (UTRs) of CCN1, CCN2, and CCN4 exhibit cryptic promoter activity. Journal of Cell Communication and Signaling, 1, 17–32. https://doi.org/10.1007/s12079-007-0003-1
Comments (0)