CTGF (CCN2): a multifaceted mediator in breast cancer progression and therapeutic targeting

Arnold, M., Morgan, E., Rumgay, H., et al. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15–23. https://doi.org/10.1016/j.breast.2022.08.010

Article  PubMed  PubMed Central  Google Scholar 

Goenka, A., Khan, F., Verma, B., et al. (2023). Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Communications, 43, 525–561. https://doi.org/10.1002/cac2.12416

Article  PubMed  PubMed Central  Google Scholar 

Jin, M.-Z., & Jin, W.-L. (2020). The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted Therapy, 5, 166. https://doi.org/10.1038/s41392-020-00280-x

Article  PubMed  PubMed Central  Google Scholar 

Akinsipe, T., Mohamedelhassan, R., Akinpelu, A., et al. (2024). Cellular interactions in tumor microenvironment during breast cancer progression: New frontiers and implications for novel therapeutics. Frontiers in Immunology, 15,. https://doi.org/10.3389/fimmu.2024.1302587

Yan, X., Xie, Y., Yang, F., et al. (2021). Comprehensive description of the current breast cancer microenvironment advancements via single-cell analysis. Journal of Experimental & Clinical Cancer Research, 40, 142. https://doi.org/10.1186/s13046-021-01949-z

Article  CAS  Google Scholar 

Mehraj, U., Dar, A. H., Wani, N. A., & Mir, M. A. (2021). Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemotherapy and Pharmacology, 87, 147–158. https://doi.org/10.1007/s00280-020-04222-w

Article  PubMed  Google Scholar 

Kular, L., Pakradouni, J., Kitabgi, P., et al. (2011). The CCN family: A new class of inflammation modulators? Biochimie, 93, 377–388. https://doi.org/10.1016/j.biochi.2010.11.010

Article  CAS  PubMed  Google Scholar 

Bradham, D. M., Igarashi, A., Potter, R. L., & Grotendorst, G. R. (1991). Connective tissue growth factor: A cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. Journal of Cell Biology, 114, 1285–1294. https://doi.org/10.1083/jcb.114.6.1285

Article  CAS  PubMed  Google Scholar 

Wells, J. E., Howlett, M., Cole, C. H., & Kees, U. R. (2015). Deregulated expression of connective tissue growth factor ( CTGF / CCN2) is linked to poor outcome in human cancer. International Journal of Cancer, 137, 504–511. https://doi.org/10.1002/ijc.28972

Article  CAS  PubMed  Google Scholar 

Zeng, H., Yang, Z., Xu, N., et al. (2017). Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling. Cell Death & Disease, 8, e2885–e2885. https://doi.org/10.1038/cddis.2017.248

Article  CAS  Google Scholar 

Yin, D., Chen, W., O’Kelly, J., et al. (2010). Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. International Journal of Cancer, 127, 2257–2267. https://doi.org/10.1002/ijc.25257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, B.-R., Chang, C.-C., Che, T.-F., et al. (2005). Connective tissue growth factor inhibits metastasis and acts as an independent prognostic marker in colorectal cancer. Gastroenterology, 128, 9–23. https://doi.org/10.1053/j.gastro.2004.10.007

Article  CAS  PubMed  Google Scholar 

Deng, Y.-Z., Chen, P.-P., Wang, Y., et al. (2007). Connective tissue growth factor is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenicity through β-catenin-T-cell factor/Lef signaling. Journal of Biological Chemistry, 282, 36571–36581. https://doi.org/10.1074/jbc.M704141200

Article  CAS  PubMed  Google Scholar 

de Bruijn, I., Kundra, R., Mastrogiacomo, B., et al. (2023). Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Research, 83, 3861–3867. https://doi.org/10.1158/0008-5472.CAN-23-0816

Article  PubMed  PubMed Central  Google Scholar 

Tang, Z., Kang, B., Li, C., et al. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47, W556–W560. https://doi.org/10.1093/nar/gkz430

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, T., Fu, J., Zeng, Z., et al. (2020). TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 48, W509–W514. https://doi.org/10.1093/nar/gkaa407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, H., Son, S., Ko, Y., & Shin, I. (2021). CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene, 40, 2667–2681. https://doi.org/10.1038/s41388-021-01731-7

Article  CAS  PubMed  Google Scholar 

Chen, P.-S., Wang, M.-Y., Wu, S.-N., et al. (2007). CTGF enhances the motility of breast cancer cells via an integrin-αvβ3–ERK1/2-dependent S100A4-upregulated pathway. Journal of Cell Science, 120, 2053–2065. https://doi.org/10.1242/jcs.03460

Article  CAS  PubMed  Google Scholar 

Chien, W., O’Kelly, J., Lu, D., et al. (2011). Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis. International Journal of Oncology, 38, 1741–1747. https://doi.org/10.3892/ijo.2011.985

Article  CAS  PubMed  Google Scholar 

Wang, M. Y., Chen, P. S., Prakash, E., et al. (2009). Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and clap1. Cancer Research, 69, 3482–3491. https://doi.org/10.1158/0008-5472.CAN-08-2524

Article  CAS  PubMed  Google Scholar 

Arnott, J. A., Lambi, A. G., Mundy, C., et al. (2011). The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Critical Reviews in Eukaryotic Gene Expression, 21, 43–69. https://doi.org/10.1615/CritRevEukarGeneExpr.v21.i1.40

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, J., Ye, L., Owen, S., et al. (2015). Emerging role of CCN family proteins in tumorigenesis and cancer metastasis (Review). International Journal of Molecular Medicine, 36, 1451–1463. https://doi.org/10.3892/ijmm.2015.2390

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aoyama, E., Hattori, T., Hoshijima, M., et al. (2009). N-terminal domains of CCN family 2/connective tissue growth factor bind to aggrecan. Biochemical Journal, 420, 413–420. https://doi.org/10.1042/BJ20081991

Article  CAS  PubMed  Google Scholar 

Qin, Y., Wu, G., Jin, J., et al. (2023). A fully human connective tissue growth factor blocking monoclonal antibody ameliorates experimental rheumatoid arthritis through inhibiting angiogenesis. BMC Biotechnology, 23, 6. https://doi.org/10.1186/s12896-023-00776-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaykov, V., & Chaqour, B. (2021). The CCN2/CTGF interactome: An approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal, 15, 567–580. https://doi.org/10.1007/s12079-021-00650-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leask, A., & Abraham, D. J. (2006). All in the CCN family: Essential matricellular signaling modulators emerge from the bunker. Journal of Cell Science, 119, 4803–4810. https://doi.org/10.1242/jcs.03270

Article  CAS  PubMed  Google Scholar 

Hahn, A., Heusinger-Ribeiro, J., Lanz, T., et al. (2000). Induction of connective tissue growth factor by activation of heptahelical receptors. Journal of Biological Chemistry, 275, 37429–37435. https://doi.org/10.1074/jbc.M000976200

Article  CAS  PubMed  Google Scholar 

Huang, B.-L., Dornbach, L. M., & Lyons, K. M. (2007). The 5′ untranslated regions (UTRs) of CCN1, CCN2, and CCN4 exhibit cryptic promoter activity. Journal of Cell Communication and Signaling, 1, 17–32. https://doi.org/10.1007/s12079-007-0003-1

Article 

Comments (0)

No login
gif