Motor control performance-related modulation of beta-band EEG–sEMG coherence differs between general and local muscular exercise-induced fatigue

Aguilar GMM, Gutiérrez D (2019) Using cortico-muscular and cortico-cardiac coherence to study the role of the brain in the development of muscular fatigue. Biomed Signal Proces Control 48(5):153–160. https://doi.org/10.1016/j.bspc.2018.10.011

Article  Google Scholar 

Alazzam AM, Ballance WB, Smith AC, Rejc E, Weber KA, Trainer R, Gorgey AS (2024) Peak slope ratio of the recruitment curves compared to muscle evoked potentials to optimize standing configurations with percutaneous epidural stimulation after spinal cord injury. J Clin Med 13(5):1344. https://doi.org/10.3390/jcm13051344

Article  PubMed  PubMed Central  Google Scholar 

Amann M, Sidhu SK, McNeil CJ, Gandevia SC (2022) Critical considerations of the contribution of the corticomotoneuronal pathway to central fatigue. J Physiol 600(24):5203–5214. https://doi.org/10.1113/JP282564

Article  CAS  PubMed  Google Scholar 

Baker SN (2007) Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 17(6):649–655. https://doi.org/10.1016/j.conb.2008.01.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baltich J, Emery CA, Stefanyshyn D, Nigg BM (2014) The effects of isolated ankle strengthening and functional balance training on strength, running mechanics, postural control and injury prevention in novice runners: design of a randomized controlled trial. BMC Musculoskel Dis 15(1):407. https://doi.org/10.1186/1471-2474-15-407

Article  Google Scholar 

Bellemare F, Garzaniti N (1988) Failure of neuromuscular propagation during human maximal voluntary contraction. J Appl Physiol 64(3):1084–1093. https://doi.org/10.1152/jappl.1988.64.3.1084

Article  CAS  PubMed  Google Scholar 

Bortel R, Sovka P (2007) Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process 87(5):1100–1117. https://doi.org/10.1016/jsigpro.2006.10.003

Article  Google Scholar 

Boyas S, Guével A (2011) Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med 54(2):88–108. https://doi.org/10.1016/j.rehab.2011.01.001

Article  CAS  PubMed  Google Scholar 

Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, van der Ploeg HP, Wari V, Willumsen JF (2020) World health organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 54(24):1451–1462. https://doi.org/10.1136/bjsports-2020-102955

Article  PubMed  Google Scholar 

Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489(Pt 3):917–924. https://doi.org/10.1113/jphysiol.1995.sp021104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fletcher JR, MacIntosh BR (2017) Running economy from a muscle energetics perspective. Front Physiol 8:433. https://doi.org/10.3389/fphys.2017.00433

Article  PubMed  PubMed Central  Google Scholar 

Fuglevand AJ, Bilodeau M, Enoka RM (1995) Short-term immobilization has a minimal effect on the strength and fatigability. J Appl Physiol 78(3):847–855. https://doi.org/10.1152/jappl.1995.78.3.847

Article  CAS  PubMed  Google Scholar 

Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

Article  CAS  PubMed  Google Scholar 

Gwin JT, Ferris DP (2012) Beta- and gamma-range human lower limb corticomuscular coherence. Front Hum Neurosci 6:258. https://doi.org/10.3389/fnhum.2012.00258

Article  PubMed  PubMed Central  Google Scholar 

Jones AM, Doust JH (1996) A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci 14(4):321–327. https://doi.org/10.1080/02640419608727717

Article  CAS  PubMed  Google Scholar 

Khademi F, Royter V, Gharabaghi A (2018) Distinct beta-band oscillatory circuits underlie corticospinal gain modulation. Cereb Cortex 28(4):1502–1515. https://doi.org/10.1093/cercor/bhy016

Article  PubMed  PubMed Central  Google Scholar 

Kilner JM, Baker SN, Salenius S, Hari R, Lemon RN (2000) Human cortical muscle coherence is directly related to specific motor parameters. J Neurosci 20(23):8838–8845. https://doi.org/10.1523/JNEUROSCI.20-23-08838.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang T, Zhang Q, Hong L, Liu X, Dong B, Wang H, Liu X (2021) Directed information flow analysis reveals muscle fatigue-related changes in muscle networks and corticomuscular coupling. Front Neurosci 15:750936. https://doi.org/10.3389/fnins.2021.750936

Article  PubMed  PubMed Central  Google Scholar 

Little S, Bonaiuto J, Barnes G, Bestmann S (2019) Human motor cortical beta bursts relate to movement planning and response errors. PLoS Biol 17(10):e3000479. https://doi.org/10.1371/journal.pbio.3000479

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu JZ, Shan ZY, Zhang LD, Sahgal V, Brown RW, Yue GH (2003) Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study. J Neurophysiol 90(1):300–312. https://doi.org/10.1152/jn.00821.2002

Article  PubMed  Google Scholar 

Liu JZ, Lewandowski B, Karakasis C, Yao B, Siemionow V, Sahgal V, Yue GH (2007) Shifting of activation center in the brain during muscle fatigue: an explanation of minimal central fatigue? Neuroimage 35(1):299–307. https://doi.org/10.1016/j.neuroimage.2006.09.050

Article  PubMed  Google Scholar 

Liu J, Sheng Y, Liu H (2019) Corticomuscular coherence and its applications: a review. Front Hum Neurosci 13:100. https://doi.org/10.3389/fnhum.2019.00100

Article  PubMed  PubMed Central  Google Scholar 

Lundbye-Jensen J, Nielsen JB (2008) Central nervous adaptations following 1 wk of wrist and hand immobilization. J Appl Physiol 105(1):139–151. https://doi.org/10.1152/japplphysiol.00687.2007

Article  PubMed  Google Scholar 

Myslobodsky MS, Coppola R, Bar-Ziv J, Weinberger DR (1990) Adequacy of the international 10–20 electrode system for computed neurophysiologic topography. J Clin Neurophysiol 7(4):507–518. https://doi.org/10.1097/00004691-199010000-00006

Article  CAS  PubMed  Google Scholar 

Noakes TD (2000) Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Spor 10(3):123–145. https://doi.org/10.1034/j.1600-0838.2000.010003123.x

Article  CAS  Google Scholar 

Paillard T (2012) Effects of general and local fatigue on postural control: a review. Neurosci Biobehav R 36(1):162–176. https://doi.org/10.1016/j.neubiorev.2011.05.009

Article  Google Scholar 

Reber L, Perry J, Pink M (1993) Muscular control of the ankle in running. Am J Sport Med 21(6):805–810. https://doi.org/10.1177/036354659302100608

Article  CAS  Google Scholar 

Salenius S, Portin K, Kajola M, Salmelin R, Hari R (1997) Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol 77(6):3401–3405. https://doi.org/10.1152/jn.1997.77.6.3401

Article  CAS  PubMed  Google Scholar 

Schwendner KI, Mikesky AE, Wigglesworth JK, Burr DB (1995) Recovery of dynamic muscle function following isokinetic fatigue testing. Int J Sports Med 16(3):185–189. https://doi.org/10.1055/s-2007-972989

Article  CAS  PubMed 

Comments (0)

No login
gif